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Abstract

Understanding functional response within a predator-prey dynamic is a cornerstone
for many quantitative ecological studies. Over the past 60 years, the methodology for
modelling functional response has gradually transitioned from the classic mechanistic
models to more statistically oriented models. To obtain inferences on these statisti-
cal models, a substantial number of experiments need to be conducted. The obvious
disadvantages of collecting this volume of data include cost, time and the sacrific-
ing of animals. Therefore, optimally designed experiments are useful as they may
reduce the total number of experimental runs required to attain the same statistical
results. In this paper, we develop the first sequential experimental design method for
predator-prey functional response experiments. To make inferences on the parameters
in each of the statistical models we consider, we use sequential Monte Carlo, which
is computationally efficient and facilitates convenient estimation of important utility
functions. It provides coverage of experimental goals including parameter estimation,
model discrimination as well as a combination of these. The results of our simulation
study illustrate that for predator-prey functional response experiments sequential de-
sign outperforms static design for our experimental goals. R code for implementing
the methodology is available via https://github.com/haydenmoffat/sequential_

design_for_predator_prey_experiments.
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1 Introduction

The term functional response refers to the number of prey consumed per predator as a
function of prey density (Solomon, 1949). Predators' feeding behaviour can be classified
according to the type of the functional response. In this task, when the consumption rate
increases linearly with prey density up to a threshold level at which it remains constant,
we speak of type I functional response, which is exclusive to filter feeders (Jeschke et al.,
2004). In type II functional response, the consumption rate continuously increases at a
decelerating rate, whereas in type III it follows a sigmoid curve (Holling, 1959). Both type
II and III functional responses reach a plateau at high prey densities and seem to prevail
in nature (Jeschke et al., 2004; Sarnelle and Wilson, 2008).

Mathematical modelling and statistical analysis of functional response plays a crucial role
in ecology as it enables us to gain a better understanding of the predator-prey interac-
tions. Biological invasions, species extinction, biological control practices, as well as the
management of ecosystems are strongly related to predators' functional response (Smith
and Slatkin, 1973; Papanikolaou et al., 2011, 2014; Dick et al., 2014). It has been shown
that type II functional response destabilise predator-prey dynamics, whereas at low prey
densities type III functional response acts as a stabilising factor (Oaten and Murdoch,
1975). Thus, describing a predator-prey system in such a quantitative manner allows for
more accurate prediction and simulations.

Predator-prey functional response experiments are set up so that a single predator (or mul-
tiple predators) has access to fixed numbers of prey for a given period of time. The number
of prey that are attacked out of the total that the predator has access to in that given time
period is recorded. In order to gain inferential information from predator-prey functional
response experiments, several trials need to be conducted. The obvious disadvantages of
collecting this inordinate volume of data and conducting these experiments include cost,
time and the sacrificing of animals. Consequently, optimal experimental design has be-
come beneficial to behavioural ecologists to reduce the number of experimental trials that
need to be run. The experimental design involves optimising a particular measure for an
experimental purpose or goal.

The current literature for optimal experimental design for functional response models
is scarce with one paper by Zhang et al. (2018). The approach of Zhang et al. (2018)
only considers static designs, which requires selecting the number of prey available to the
predator(s) for each experiment in the study prior to any experimentation. If there is little
prior information on functional response model parameters, then optimal designs may be
inefficient. Furthermore, Zhang et al. (2018) consider optimal designs for the purpose
of precise frequentist parameter estimation for a single, assumed true, model. However,
Papanikolaou et al. (2016) demonstrate that there can be significant uncertainty in which
functional response model might be responsible for data generation. Therefore, the ability
to acknowledge model structure uncertainty and the ability to use optimal design to help
discriminate between the models is highly desirable.

In this paper we develop the first sequential experimental design approach for predator-
prey functional response experiments. Unlike the static design framework used by Zhang
et al. (2018), the sequential design set-up allows practitioners to update their information
about model structure and parameter values as observations are collected sequentially.
In the optimal design context, this is important as this additional information can lead
to more efficient design choices for future observations. Moreover, in contrast to Zhang
et al. (2018), our approach explicitly accommodates uncertainty in the model structure.
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We consider optimal experimental design utility functions for the purpose of parameter
estimation and/or model discrimination. Our sequential design methodology uses the
sequential Monte Carlo (SMC) approach of Drovandi et al. (2013) and Drovandi et al.
(2014), which is computationally efficient and permits convenient estimation of utility
functions for parameter estimation or model discrimination. We demonstrate how the
total entropy criterion of Borth (1975), a dual-purpose utility function for the goals of
parameter estimation and model discrimination, is easily computed with our approach.

The rest of the paper is outlined as follows. Section 2 provides background information
regarding the fundamentals of modelling functional response. A simple illustration of the
sequential design process is included in Section 3. Section 4 describes our sequential ex-
perimental design approach in more detail. Section 5 outlines a simulation study that was
conducted to demonstrate and quantify the benefits of using the methodology proposed in
the paper. This simulation study enables us to gain insight into examples of a predator-
prey interaction while also evaluating the performance of the algorithm and of resulting
designs. The paper is then concluded in Section 6 with a discussion of the simulation
study results, the limitations of our approach and possible future work.

2 Background on Functional Response Models and Predator-
Prey Functional Response Experiments

Among current behavioural ecologists, the mechanistic equations developed by Holling
(1959) are favoured when modelling functional response for predator-prey interactions
(see, for example, Beddington, 1975; Okuyama, 2012). The preference for these models
stems from their simple structure, where parameters can be easily translated to physi-
cal phenomena such as consumption rate and handling time. The simplest of Holling's
equations is often referred to as the disc equation or Holling's type II functional response
model. Holling's type II model is given by the ordinary differential equation,

dN

dτ
= − aN

1 + aThN
. (1)

The parameters a and Th represent the attack rate, i.e. the per capita prey consumption
at low prey densities, and the handling time, i.e. the time a predator spends subduing,
pursuing and eating a prey item, respectively. N denotes the prey density in a given
area, and is a function of τ (time). Holling's modelling approach for type II illustrates a
functional response curve where the consumption rate increases with prey density at a de-
celerating rate, until it reaches a plateau/constant consumption rate. An extension of the
disc equation is Holling's type III model (Holling, 1959). The type III functional response
model describes situations in which the functional response curve forms a characteristic
“S” shape. That is, the consumption rate accelerates at low prey densities, decelerates at
high prey densities and then reaches a plateau/constant consumption rate. Holling's type
III model is given by

dN

dτ
= − aN2

1 + aThN2
. (2)

Although there are more complex prey-dependent functional response models in the cur-
rent literature (see, for example, Jeschke et al., 2002), this paper will solely focus on
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the implementation of Holling's type II and type III models due to their popularity and
simplicity. However, our method can easily accommodate any functional response model.

The primary interest in (1) and (2) is on the parameters Th and a. To obtain more infor-
mation on a predator-prey interaction, particularly inferences on the related parameters,
experimental data with varying initial prey densities are collected. Figure 1 shows an ex-
ample of predator-prey functional response data collected from an experiment conducted
by Papanikolaou et al. (2016).

Figure 1: An example predator-prey functional response dataset from Papanikolaou et al.
(2016).

For the study, I independent runs of the predator-prey system are conducted. The initial
prey density at run i is denoted by N0,i for i = 1, . . . , I. This variable is controlled by
the experimenter. At each run, the number of prey consumed in a fixed time period (in
hours), τ , denoted by ni(τ), is observed and used as the response variable. In this paper,
we link Holling's type II and type III models to probabilistic models to help account for
uncertainty in the observational data. We link them in such a way so that solutions to
mechanistic models are used to determine the expected proportions of prey eaten in the
probabilistic models we consider.

We define n(τ) to be the number of prey consumed/eaten for a single experiment that has a
fixed time period of τ . Given that τ is usually fixed across experiments, we write n = n(τ)
for notational simplicity. We consider two possible distributions for n. Since for any fixed
time period τ , each of the N0 prey is either dead or alive, a binomial distribution might
be a reasonable assumption. Alternatively, in the case where the data seems to indicate
overdispersion, which often arises in predator-prey functional response data (Trexler et al.,
1988), the beta-binomial distribution may be more appropriate to describe the distribution
of n. Fenlon and Faddy (2006) and Zhang et al. (2018) use the beta-binomial distribution
to capture the variability of the data in a similar context.
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For the case where the number of prey consumed is modelled by the binomial distribution,
we have a set-up that is similar to that of Papanikolaou et al. (2016):

n ∼ Binom(N0, pτ ),

pτ =
N0 −Nτ

N0
,

where pτ is the probability that a single prey has been consumed by time τ and Nτ is
the solution of the differential equation of the type II or type III model. pτ and Nτ both
implicitly depend on the model parameters a and Th, but we do not explicitly write them
here for notational convenience.

For the beta-binomially distributed case, we have a set-up that is similar to Zhang et al.
(2018). The probability mass function for a single observation and the expected value are
given by

p(n;N0, α, β) =

(
N0

n

)
B(n+ α,N0 − n+ β)

B(α, β)
, (3)

E[n] =
N0α

α+ β
, (4)

respectively. In (3) and (4), α and β represent the two parameters of the beta-binomial
distribution and B(·, ·) is the beta function.

To link the solutions of the mechanistic equations to the beta-binomial distribution, we
re-parameterise the beta-binomial distribution in terms of the expected proportion, pτ ,
and over-dispersion parameter, λ, such that

pτ =
α

α+ β
=
N0 −Nτ

N0
and

λ =
1

α+ β
.

Therefore, we have that

n ∼ BetaBinom(N0, pτ , λ).
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3 Illustration of the Sequential Design Process

To assist decision makers who need to optimise their predator-prey functional response
experiments, we provide a simple illustration of the sequential design process. This section
is less technical than other sections, with the purpose of making the methodology described
in the paper more accessible to practitioners. Section 4 provides a more technical overview
of the methodology.

Consider a scenario where the aim of our predator-prey functional response experiments
is efficient parameter estimation and model discrimination. Our myopic sequential design
approach involves running experiments one-at-a-time and using the results from the pre-
vious experiments to make more informed decisions about future experimentation. The
set-up for our approach is simple and only requires the user to define prior probabilities
for each candidate model and prior distributions for the parameters of each model. For
this illustrative example, we design and conduct 4 experiments. For illustrative purposes,
we assume that the true model (model responsible for data generation) is a Holling's type
II beta-binomial model and its parameters are a = 0.5, Th = 0.7 and λ = 0.5.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 2: The utility curve for each iteration of the sequential design process. The x-axis
indicates the experimental design and the y-axis represents its corresponding utility value.
The optimal design on each curve has been identified with an arrow.
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Before we run an experiment, we need to make a decision regarding the number of prey
we initially make available to the predator. The optimal initial prey density for the next
experiment is determined by maximising a function that is related to our experimental
objective. This function depends on our current knowledge of the parameters and model
probabilities and is commonly referred to as a utility function. For more information
on utility functions and how they capture the goals of an experiment see Section 4.3.
As mentioned earlier, the utility function for this illustration is designed to (on average)
detect the preferred model and precisely estimate the corresponding model parameters as
quickly as possible. Figure 2 shows the utility curve for each of the 4 experiments. The
optimal initial prey density for the next experiment is identified on each curve. For this
illustrative example, the initial prey densities for our 4 experiments are 299, 38, 20 and
30. The search space for the optimisation is simply all the feasible initial prey densities.
We include all whole numbers from 1 to 300 in our search space for this example.

After the optimal initial prey density for the next experiment is identified, we conduct an
experiment using that initial number of prey. We record the corresponding observation,
which is the number of prey consumed, and update the posterior distribution. Here we
update the posterior distribution using sequential Monte Carlo (see Section 4.4) given its
computational efficiency for updating posterior approximations. However, other posterior
sampling/approximation methods could be adopted here. The posterior then becomes
the prior for the next experiment. This process is repeated until a specified number
of experiments have been run or a certain level of precision has been reached. Figure
3 illustrates the evolution of the marginal posterior distribution of log(Th) over the 4
experiments. A continual increase in the precision of the parameter is clearly visible. The
prior model probability of the true model is 0.25. The posterior model probabilities of the
true model after each of the 4 experiments are 0.45, 0.62, 0.52, and 0.47 (ordered from the
1st experiment to the 4th experiment). Although the true model probability is fluctuating,
the probability will tend to 1 with the collection of more data.

Figure 3: Marginal posterior distribution of log(Th) after 1, 2, 3 and 4 iterations of the
sequential design process. The parameter Th is from the Holling's type II beta-binomial
functional response model. The marginal posteriors are compared to the prior and the
true value of the parameter is displayed as a star.
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4 Sequential Experimental Design

4.1 General Notation

The following section outlines the general notation that is used throughout the paper.
Define K to be the total number of candidate models. Define M to be a random variable
that indicates which model is responsible for data generation. M can take the values
{1, . . . ,K}. Let y1:i denote a vector of all the observations up to experiment number i
and d1:i represent a vector of all the selected design points up to experiment number i.
The likelihood of observing y1:i for model m with a set of parameters θm is denoted by
f(y1:i|M = m,θm,d1:i). Denote π0(θm|M = m) to be our prior distribution, that is,
our knowledge of the parameter θm for model m prior to the experiment. The posterior
distribution of θm for model m after i experiments is given by

πi(θm|M = m,y1:i,d1:i) =
f(y1:i|M = m,θm,d1:i) π0(θm|M = m)

Zm,i
,

where Zm,i is the evidence for model m and is given by the prior predictive probability of
the observed data:

Zm,i = f(y1:i|M = m,d1:i) =

∫
θm

f(y1:i|M = m,θm,d1:i) π0(θm|M = m) dθm.

For the remainder of this article, M = m will be referred to as just m for simplicity. In the
context of functional response models, yi = ni, di = N0,i, m refers to a particular functional
response model and θm its corresponding parameter; for example, θm = (a, Th, λ) for a
beta-binomial type II or III functional response model.

We now define the notation relevant to the sequential experimental design aspect of the
paper. We denote the proposed design point as d and a possible value of the response after
we have observed y1:i as z. Define D to be a set of all the possible design points for a single
observation and S be a set of all the possible responses. The utility for the design point d
at observation z and for model m based on the current data is denoted U(d, z,m|y1:i,d1:i).
The utility for the proposed design point, U(d|y1:i,d1:i), can be obtained by taking the
expectation over the model and observation space. Section 4.3 outlines the specific utility
functions used in this paper.

When we collect a new observation, we can easily update the posterior, assuming inde-
pendence among observations, by multiplying the current posterior by the likelihood of
the next observation (d, z):

πi+1(θm|m,y1:i, z,d1:i, d) ∝ f(z|m,θm, d)πi(θm|m,y1:i,d1:i) for i = 0, ..., I − 1. (5)

4.2 Sequential Optimal Design

In this section we discuss the relevant theory necessary to understand the proposed sequen-
tial optimal experimental design algorithm. The algorithm itself is presented in Section
4.5. Sequential experimental design involves the utilisation of previously collected data
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in conjunction with a utility function to improve future data collection. We collect data
points one-at-a-time and make an informed decision on the next design point. This my-
opic approach to experimental design has many advantages over static designs. Sequential
experimental designs are generally more efficient in the presence of parameter and model
uncertainty (see, for example, Dror and Steinberg, 2008) and involve lower-dimensional
design optimisation problems at each iteration. Another benefit is that the sequential
nature of the experimental design is well suited to SMC. SMC has several benefits which
will be discussed later in Section 4.4.

Optimal experimental design involves selecting design points such that the experimental
goals are achieved in the minimum possible number of experimental runs. In this paper
we consider the experimental goals of parameter estimation, model discrimination and a
combination of these. The experimental goals can be captured by different utility functions
which depend on the currently collected data. Define d∗ to be the optimal design point
for the next observation. We obtain the optimal design point by maximising the utility
over the design space D:

d∗ = arg max
dεD

U(d|y1:i,d1:i).

The utility of design point d, U(d|y1:i,d1:i), is determined by taking the expectation of
the user-specified utility function, U(d, z,m|y1:i,d1:i), over the response and model space:

U(d|y1:i,d1:i) =

K∑
m=1

πi(m|y1:i,d1:i)
∑
zεS

f(z|m,y1:i,d1:i, d) U(d, z,m|y1:i,d1:i). (6)

The quantity f(z|m,y1:i,d1:i, d) is the posterior predictive probability of a future obser-
vation and is given by

f(z|m,y1:i,d1:i, d) =

∫
θm

f(z|m,θm, d) πi(θm|m,y1:i,d1:i) dθm.

4.3 Utility Functions

Selecting a utility function that adequately captures the goals of an experiment is an
integral part of optimal experimental design. Our aim is to select design points in order
to increase our certainty around the “true model” upon observation of the experimental
outcomes. In this section, we outline the three utility functions used in our SMC algorithm,
all of which correspond to a specific experimental goal.

An important component of all the utilities is the Kullback-Leibler divergence (KLD)
(Kullback and Leibler, 1951). The KLD is an information-based measure of disparity
between two distributions. In our case, the KLD represents the information gain on the
true data generating process.

4.3.1 Parameter Estimation Utility

If the objective of our sequential experimental design is to maximise the precision of model
parameter posterior distributions, the KLD between the current and updated posterior
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distributions is a highly useful utility. For model m, the KLD between the current pos-
terior, πi(θm|m,y1:i,d1:i), and the posterior based on the observation z and the proposed
design point d, πi+1(θm|m,y1:i, z,d1:i, d), is given by

U(d, z,m|y1:i,d1:i) =

∫
θm

πi+1(θm|y1:i, z,d1:i, d) log

(
πi+1(θm|y1:i, z,d1:i, d)

πi(θm|y1:i,d1:i)

)
dθm, (7)

where the dependency of the current and updated posterior on m is omitted for brevity.
Equation (7) is simplified to,

U(d, z,m|y1:i,d1:i) =

∫
θm

πi+1(θm|y1:i, z,d1:i, d) log f(z|θm, d) dθm − log

(
Zm,i(d, z)

Zm,i

)
,

(8)

where again the dependency of the current and updated posterior as well as the likelihood
of z on m is omitted. The value Zm,i(d, z) represents the evidence at experiment number
i+ 1 for model m if we observe the response z at the next design point d.

The utility given in (8) will allow us to optimally design an experiment for the goal of
parameter estimation for all of the K candidate models. The utility for design point d,
U(d|y1:i,d1:i), is given by substituting (8) into (6).

4.3.2 Model Discrimination Utility

Alternatively, a model discrimination utility may be of interest. In this case, we use
a utility which is based upon the mutual information between the model indicator, m,
and the predicted observation, z. The mutual information is mathematically equivalent
to the KLD between the joint distribution of m and z and the product of the marginal
distributions ofm and z. This utility was initially suggested by Box and Hill (1967) and has
been recently implemented by Drovandi et al. (2014). The utility for model discrimination
is given by

U(d, z,m|y1:i,d1:i) = log π(m|y1:i, z,d1:i, d). (9)

The utility for design point d, U(d|y1:i,d1:i), is given by substituting (9) into (6).

4.3.3 Dual-Purpose Utility

Similar to the design problems discussed by Dette et al. (2001), Zen and Tsai (2004) and
Senarathne et al. (2020), we consider a dual-purpose experimental goal which combines
parameter estimation and model discrimination using the total entropy criterion (Borth,
1975). Denote UPE(d, z,m|y1:i,d1:i) to be the parameter estimation utility from (8) and
UMD(d, z,m|y1:i,d1:i) denote the model discrimination utility from (9). The dual-purpose
utility for design point d is given by

U(d, z,m|y1:i,d1:i) = UPE(d, z,m|y1:i,d1:i) + UMD(d, z,m|y1:i,d1:i), (10)
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which is purely the sum of the parameter estimation and model discrimination utilities.

Through the process of simplifying and removing terms which do not depend on the design
point d, we arrive at a dual-purpose utility:

U(d|y1:i,d1:i) =
K∑
m=1

πi(m|y1:i,d1:i)
∑
zεS

f(z|m,y1:i,d1:i, d)∫
θm

πi+1(θm|m,y1:i, z,d1:i, d) log f(z|m,θm, d) dθm

−
∑
zεS

f(z|y1:i,d1:i, d) log f(z|y1:i,d1:i, d).

The posterior predictive distribution f(z|y1:i,d1:i, d) is determined by averaging f(z|m,y1:i,d1:i, d)
over all the models.

Given the form of these utility functions, most of these utilities are analytically intractable
and therefore must be estimated. Unfortunately, estimating these quantities is not a
straightforward process. SMC enables us to form particle approximations to a number of
intractable integrals contained within utility functions. In addition, the form of our utility
functions is convenient for estimation through SMC. Sections 4.4 and 4.5 discuss these
approximations in greater depth.

4.4 Sequential Monte Carlo

SMC samplers are a useful tool for assessing parameter and model uncertainty when con-
ducting sequential experimental design. The main advantage of using an SMC framework
for sequential design is that after collecting an observation, it enables us to obtain effi-
cient approximations to the posterior and other quantities of interest. Consequently, this
allows us to efficiently obtain approximations of utility functions (see Section 4.5) as data
is collected and thus allows us to easily explore the design space, D, for the next optimal
design point.

SMC involves traversing a set of J weighted samples (particles) for each of our K models
through a sequence of slowly evolving target distributions by iteratively conducting re-
weighting, resampling and move steps. We denote the set of particles representing the

target for modelm at experiment number i to be
{
θjm,i

}J
j=1

with the corresponding weights{
W j
m,i

}J
j=1

. We denote the unnormalised and normalised weights for the jth particle of

model m at experiment number i as wjm,i and W j
m,i, respectively. In this implementation of

SMC, the sequence of distributions is formed through the process of data annealing. This
process involves setting up a sequence of distributions by introducing data one-at-a-time
to arrive at the posterior.

Given a particular model, m, the sequence of targets is given by

πi(θm|m,y1:i,d1:i) ∝ f(y1:i|m,θm,d1:i) π0(θm|m) for i = 1, ..., I.

After an observation is collected, we initially re-weight the particles to reflect the new tar-
get distribution, which in our case is the updated posterior distribution. This is conducted
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through the process of importance sampling where the unnormalised weights for our new
target are given by

wjm,i+1 = W j
m,if(yi+1|m,θjm,i, di+1).

After the re-weighting process is completed and the weights are normalised, the weights
tend to become more skewed. This leads to the reduction in the effective sample size
(ESS). The ESS is a measure of the efficiency of a particle set and refers to the number
of independent samples (of equal weight) from the target distribution that the weighted
sample is worth. The ESS for model m at experiment number i can be estimated by

ESSm,i =
1∑J

j=1(W
j
m,i)

2
. (11)

After an observation is introduced into each model, we check the condition that the ESS is
greater than some threshold, E, for example J/2. Once the ESS drops below this threshold,
it indicates that the particles are less informative than a sample of E independent draws
from the target distribution. Using such a sample can lead to estimates of integrals with
very high or even infinite variance. Therefore, to tackle this problem and boost the ESS
back up to J , we use a resampling algorithm. Although this improves the value of the
ESS, the sample will contain many duplicates. Therefore, after conducting this resampling
step, a move step is required.

The purpose of a move step is to diversify the set of particles whilst maintaining in-
variance for the current target distribution. We do this by moving each particle ac-
cording to a Markov Chain Monte Carlo (MCMC) kernel with invariant distribution
πi(θm,i|m,y1:i,d1:i). A disadvantage of using an MCMC kernel is that movement of all
the particles is not guaranteed. Therefore, one iteration may not be enough to diversify
the particle set. An appropriate number of times to conduct the move step was proposed
by Drovandi and Pettitt (2011) and must satisfy

Rm ≥
log c

log(1− p)
. (12)

The value 1 − c is our pre-specified probability that the particle will move and p is the
probability of acceptance at the MCMC move step. This acceptance probability, p, is
estimated by conducting one “probing” MCMC move step for each particle in the set and
determining the overall proportion of particles which move.

A useful property of this algorithm is that for each model m, we can approximate the
log evidence, logZm,i, using the particle weights. Del Moral et al. (2006) show that we
can approximate the ratio of normalising constants, Zm,i+1/Zm,i, and hence the posterior
predictive distribution, f(yi+1|m,y1:i,d1:i+1), for each model at the current experimental
number i using

Zm,i+1/Zm,i = f(yi+1|m,y1:i,d1:i+1) ≈
J∑
j=1

W j
m,if(yi+1|m,θjm,i, di+1).
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Since we know that logZi+1 =
∑i

v=0 log(Zi+1−v/Zi−v) and Z0 = 1, we are able to easily
approximate logZi+1 in our SMC algorithm. This can be achieved by adding the logarithm
of the normalising constant ratio at each experimental number i to the current log evidence:
logZm,i+1 = logZm,i + log(Zm,i+1/Zm,i).

Section 4.5 discusses a major benefit of using SMC for sequential experimental design,
which is that SMC produces convenient outputs that are used for estimation of utilities
and other important quantities.

4.5 Estimation of Utility Functions

SMC provides an efficient way for estimating the utility functions for proposed design
points. The quantities within the utility functions are estimated solely using the particle
values and the corresponding weights and are computed in the same way regardless of the
model and parameters chosen for the data. We now demonstrate how we can approximate
U(d, z,m|y1:i,d1:i) and other relevant quantities such as posterior model probabilities ap-
pearing in algorithm 1. Define wjm,i(d, z) and W j

m,i(d, z) to be the updated unnormalised

and normalised weights of the jth particle after observing response z at design d, re-
spectively. We estimate the ratio of two normalising constants and hence the posterior
predictive distribution by

Zm,i(d, z)

Zm,i
= f(z|m,y1:i,d1:i, d) ≈

J∑
j=1

W j
m,if(z|θjm,i, d) =

J∑
j=1

wjm,i(d, z). (13)

Using the normalised weighted samples and Monte Carlo integration, we can approximate
the integral within the parameter estimation utility in (8):

∫
θm

πi+1(θm|m,y1:i, z,d1:i, d) log f(z|m,θm, d) dθm ≈
J∑
j=1

W j
m,i(d, z) log f(z|m,θjm,i, d).

We estimate the posterior predictive distribution, f(z|y1:i,d1:i, d), by

f(z|y1:i,d1:i, d) ≈
K∑
m=1

π̂i(m|y1:i,d1:i)
J∑
j=1

wjm,i(d, z).

The posterior model probabilities at experiment number i, πi(m|y1:i,d1:i), can be esti-
mated by normalising the evidences (see (13)). Using these approximations together with
(6), we can approximate the utilities. The SMC algorithm for optimal sequential experi-
mental design is presented in algorithm 1.
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Algorithm 1 SMC algorithm for sequential experimental design

INPUT: Total number of experiments to run, I, number of samples for each model,
J , an appropriate ESS threshold, E, the model prior distributions, π0(θm|m), and the
likelihood function, f(yi|m,θm, di).

OUTPUT: The selected design points, d1:I and the responses observed at those design
points, y1:I .

1: Draw samples from model priors, θjm,0 ∼ π0(θm|m), for m = 1, ...,K and for j =
1, ..., J .

2: Initialise weights, W j
m,0 = 1/J , for m = 1, ...,K and for j = 1, ..., J .

3: Initialise log evidences, log Ẑm,0 = 0, for m = 1, ...,K.
4: for i = 0 to I − 1 do
5: Select design point di+1 to maximise some given utility U(d|y1:i,d1:i).
6: Generate/collect observation yi+1 at the design point di+1.
7: for m = 1 to K do
8: Compute the updated unnormalised weights, wjm,i+1 = W j

m,if(yi+1|m,θjm,i, di+1),
for j = 1, ..., J .

9: Update the log evidence, log Ẑm,i+1 = log Ẑm,i + log
∑J

j=1w
j
m,i+1.

10: Normalise the weights, W j
m,i+1 = wjm,i+1/

∑J
q=1w

q
m,i+1, for j = 1, ..., J .

11: Compute the effective sample size, ESSm,i+1 = 1/
∑J

j=1(W
j
m,i+1)

2 .
12: if ESSm,i+1 < E then

13: Resample particle set to obtain
{
θjm,i+1

}J
j=1

.

14: Set W j
m,i+1 = 1/J for j = 1, ..., J .

15: Set ESSm,i+1 = J .
16: Determine the parameters of the MCMC proposal qm,i+1(·|·) using the current

particles,
{
θjm,i+1

}J
j=1

.

17: for j = 1 to J do
18: Conduct a one iteration move step by moving the particle θjm,i+1 with an

MCMC kernel of invariant distribution πi+1(θm,i+1|m,y1:i+1,d1:i+1).
19: end for
20: Calculate acceptance probability, p, and hence Rm.
21: for j = 1 to J do
22: Move particle θjm,i+1 with an MCMC kernel of invariant distribution

πi+1(θm,i+1|m,y1:i+1,d1:i+1) iterated Rm − 1 times.
23: end for
24: else
25: Set θjm,i+1 = θjm,i for j = 1, ..., J .
26: end if
27: end for
28: end for
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5 Simulation Study

To demonstrate the methods highlighted in this paper, we now conduct a simulation study.
The purpose of this simulation study is to illustrate the benefit of using optimal sequential
design over optimal static design for predator-prey functional response experiments. For
a detailed description of the optimal static design methodology used in this study, see
Appendix A. As a baseline to facilitate the comparison of optimal design methods, we also
include a design strategy that randomly selects initial prey levels.

For our simulation study, we consider 40 different settings for the true data generating
process, consisting of 4 different true models each with 10 different true parameter set-
tings. The four different models are defined in Table 1.

Mechanistic Model

Distribution of n Holling's type II Holling's type III

beta-binomial Model 1 Model 2
binomial Model 3 Model 4

Table 1: Models used for simulation study

For each of the 40 different model/parameter configurations, and for each design selection
method, we run algorithm 1 30 times independently. The total number of observations
collected in each run of the SMC algorithm is I = 25. The set of true parameter settings
are drawn from the posterior distribution based on the dataset from Papanikolaou et al.
(2016) (we use SMC to sample the posterior here). The dataset used is the same data
from Figure 1.

For this simulation study, we consider the total exposure time of prey and predator to be
τ = 24 hours. The design points N0,i are members of the set D = {1, . . . , 300} and the
responses can assume the values ni ∈ {0, . . . , N0,i} for i = 1, . . . , I. The prior distribution
of the parameters is given by log(a) ∼ N(−1.4, 1.352), log(Th) ∼ N(−1.4, 1.352) and
log(λ) ∼ N(−1.4, 1.352). The prior distribution was chosen to be reasonably vague but
giving little support to unrealistic regions of the parameter space. If the practitioner has
access to more prior information, this can easily be incorporated into our framework by
simply changing the prior distribution. The parameter λ is only required in the beta-
binomial models. In addition, the prior model probabilities are equal across the K = 4
models.

To assess the effect of the different design point selection methods on the precision of the
parameters, we compare the distribution of the Bayesian D-posterior precision (Drovandi
et al., 2013) obtained by the simulation study across the different methods. The Bayesian
D-posterior precision, which is estimated by taking the inverse of the determinant of the
weighted sample covariance matrix of the SMC particles, is a measure that allows us to
quantify the precision of model parameters. The comparison of the Bayesian D-posterior
precision is conducted for each true model. Similarly, to assess the model discrimination
power of the algorithm, we can compare the distribution of posterior model probabilities
for each model across the different design methods and different true models. Section 5.1
explores these comparisons and displays results from the simulation study.
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5.1 Results

For each true model, Figure 4 compares the distribution of the log Bayesian D-posterior
precision for the designs generated from the random, sequential and static methodologies.
In this particular case, the experimental aim for the static and sequential designs is precise
parameter estimation. It is apparent from Figure 4 that the sequential experimental design
methodology outperforms the other methods for all true models. In addition, we can see
that the two optimal designs outperform the randomly generated designs. Therefore,
both optimal experimental design methods can be beneficial for parameter estimation in
predator-prey functional response experiments.

(a) True Model 1 (b) True Model 2

(c) True Model 3 (d) True Model 4

Figure 4: Distribution of the log Bayesian D-posterior precision for random, sequential
and static design selection methods for each true model. RG and PE signify randomly
generated and parameter estimation, respectively. The goal of the optimal designs is
precise parameter estimation.

The distributions of the posterior model probabilities obtained with randomly generated,
optimal sequential and optimal static designs for different true models are shown in Figure
5. The goal of the optimal designs in this example is to discriminate between models.
Similar to the results of the parameter estimation experimental goal, the sequential design
outperforms the other methods for the goal of model discrimination.

Figure 6 and Figure 7 compare the precision of parameters and model probabilities, respec-
tively, between randomly generated, sequential and static designs when the experimental
aim is dual-purpose. We can see from the figures that the sequential design outperforms
the static for both components of the dual-purpose experimental goal. This pattern is
consistent across all true models.
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(a) True Model 1

(b) True Model 2

(c) True Model 3

(d) True Model 4

Figure 5: Distributions of the posterior model probabilities for randomly generated, se-
quential and static design selection methods. Distributions are displayed and compared
for each true model. RG and MD signify randomly generated and model discrimination,
respectively. The x-axis on each plot represents the model number and corresponds to the
numbers in Table 1. The y-axis represents the posterior model probability. The goal of
the optimal designs is discriminating between models.
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(a) True Model 1 (b) True Model 2

(c) True Model 3 (d) True Model 4

Figure 6: Distributions of the log Bayesian D-posterior precision for random, sequential
and static design selection methods for each true model. RG and TE signify randomly
generated and total entropy, respectively. The goal of the optimal designs is dual-purpose
(parameter estimation and model discrimination).
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(a) True Model 1

(b) True Model 2

(c) True Model 3

(d) True Model 4

Figure 7: Distributions of the posterior model probabilities for randomly generated, se-
quential and static design selection methods. Distributions are displayed and compared for
each true model. RG and TE signify randomly generated and total entropy, respectively.
The x-axis on each plot represents the model number and corresponds to the numbers in
Table 1. The y-axis represents the posterior model probability. The goal of the optimal
designs is dual-purpose (parameter estimation and model discrimination).
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6 Discussion

Optimally designed predator-prey functional response experiments are largely advanta-
geous for quantitative ecological studies. Optimal designs in functional response can
reduce cost, improve time efficiency and prevent the sacrificing of animals. Previously,
the only approach for optimal experimental design within predator-prey functional ex-
periments (Zhang et al., 2018) has been a static design which is solely reliant on the
information known prior to the experiment. Therefore, current methodology does not
take into account the information collected during the experiment. This can lead to in-
efficient designs and outcomes which are not significantly informative. Using sequential
designs over static designs enables practitioners to update their information on model and
parameter uncertainty as observations are collected sequentially.

This paper outlines the first sequential experimental design method for predator-prey func-
tional response experiments. It utilises SMC, which is computationally efficient and allows
the convenient estimation of utility functions for parameter estimation or model discrim-
ination. The results from our simulation study highlight the advantage of using optimal
sequential design over other alternatives such as optimal static design and randomly gen-
erated designs. Additionally, the results in Appendix B illustrate that the dual-purpose
design selection method is able to effectively discriminate between functional response
models and acquire precise parameter estimation simultaneously.

Computational issues with our algorithm occasionally arise when fitting the incorrect
model to the data. After a new observation is collected, the particle weights for each
model are updated in our SMC algorithm. If we are fitting the incorrect model to the
data, there can be a large difference between the posterior at experiment number i and
the posterior at experiment number i + 1. This results in the ESS at i + 1 becoming
extremely low, even to the point where the ESS is approximately 1. If this occurs, only
a few unique particles remain in the sample, even after the resampling and move steps
are completed. Using this sample can lead to poor estimates of utility functions and
other quantities. These computational issues could possibly be avoided by constructing
a sequence of target distributions between the posterior at experiment number i and at
experiment number i+ 1.

Another obvious limitation to this myopic approach is that looking only one observation
ahead is not optimal (Borth, 1975). We could possibly investigate a two-step ahead dy-
namic programming algorithm and determine whether it has a significant effect on results.

The ability to use optimal design to help achieve the experimental goals of parameter es-
timation and model discrimination is highly desirable in any application. The conducted
simulation study illustrates that our sequential experimental design algorithm is a useful
tool for predator-prey functional response experiments. Our algorithm enables a conclu-
sion regarding model and parameter uncertainty to be reached at a much earlier stage
than would be possible with a random or static design.

Data Accessibility

R code for implementing the methodology is available via https://github.com/haydenmoffat/
sequential_design_for_predator_prey_experiments.
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Appendix A

For completeness, we have included a description of the methodology used to conduct
optimal static design. We consider optimal designs for the purpose of precise parameter
estimation and/or model discrimination.

Static Optimal Design Methodology

Bayesian optimal static design involves using prior information to select multi-dimensional
designs for a particular experimental goal. Obtaining an optimal design in this way is
computationally challenging as it requires maximising an analytically intractable utility
function over a high-dimensional design space. To determine these designs, we use the
methodology of Overstall et al. (2018) to find a multi-dimensional near-optimal static
design.

General Methodology

Recall the notation used within the optimal design section of this paper. For a given
experiment, the total number of observations is I. The user-specified utility function for
the model m, the design d1:I and the response y1:I is denoted U(d1:I ,y1:I ,m). Here we
do not explicitly include θm in the utility function because the utilities that we define in
the next subsection and in the main paper have θm integrated out.

The optimal static design is found by maximising the expected utility over the design
space. The expectation is taken with respect to the joint distribution of all unknown
quantities, which include the models and experimental responses. The expectation of the
user-specified utility, and thus the utility of the multi-dimensional design, d1:I , is given by

U(d1:I) = Em,y1:I |d1:I [U(d1:I ,y1:I ,m)] .

Since the expectation of the utility function typically does not have a closed-form solution,
numerical methods such as Monte Carlo estimation are required to approximate it. The
Monte Carlo approximation of the expected utility is given by

U(d1:I) =
1

B

B∑
b=1

U(d1:I ,y
b
1:I ,m

b),

where B represents the number of Monte Carlo draws and
{
yb1:I ,m

b
}B
b=1

are samples
from the joint distribution of m and y1:I . Therefore, to compute this approximation for
the expected utility, we only require the ability to sample from the joint distribution
of m and y1:I and to evaluate the user-specified utility function for each sample. The
evaluation of the utility functions is the focus of the next subsection.

24



Utility Functions

The following utility functions can be used to encapsulate the goals of the experiment (e.g.
parameter estimation, model discrimination and dual-purpose). The parameter estimation
utility for model m is given by the KLD between the prior distribution of θm, π0(θm|m),
and the posterior distribution of θm, πI(θm|m,y1:I ,d1:I). The parameter estimation utility
is given by

U(d1:I ,y1:I ,m) =

∫
θm

πI(θm|m,y1:I ,d1:I) log

(
πI(θm|m,y1:I ,d1:I)

π0(θm|m)

)
dθm. (14)

The static design utility in (14) differs from the sequential parameter estimation utility
function given in the main text in (8). In sequential design, data is collected one obser-
vation at a time. Therefore, utilities in these sequential designs are based on a singular
design point rather than a mutli-dimensional design. Consequently, the sequential pa-
rameter estimation utility is given by the KLD between the current (after i observations
are collected) and updated (after i + 1 observations are collected) posterior distributions
rather than the prior (before any data is collected) and posterior (after all data is collected)
distributions of the parameters.

The Box and Hill (1967) utility for model discrimination is given by

U(d1:I ,y1:I ,m) = log πI(m|y1:I ,d1:I). (15)

The dual-purpose utility suggested by Borth (1975) is given by the sum of the parameter
estimation and model discrimination utilities. In all three utilities, posterior quantities
are required to evaluate the utility function. Since the posterior distribution of θm and m
will not have a neat closed form, a further approximation is required.

Approximating Posterior Distributions and Other Quantities

To make inferences on models/parameters in the Bayesian framework, the joint posterior
distribution of the parameters θm and model m is of interest. This joint distribution can be
represented in a convenient form: πI(θm,m|y1:I ,d1:I) = πI(θm|m,y1:I ,d1:I)πI(m|y1:I ,d1:I).
For more information on Bayesian inference in the presence of parameter and model un-
certainty, see O’Hagan and Forster (2004). The posterior distribution of parameters is
given by

πI(θm|m,y1:I ,d1:I) =
f(y1:I |m,θm,d1:I)π0(θm|m)

f(y1:I |m,d1:I)
, (16)

where the marginal likelihood is given by

f(y1:I |m,d1:I) =

∫
θm

f(y1:I |m,θm,d1:I)π0(θm|m) dθm.
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The posterior model probabilities are given by

πI(m|y1:I ,d1:I) =
f(y1:I |m,d1:I)π0(m)∑K
k=1 f(y1:I |k,d1:I)π0(k)

, (17)

where the k inside the summation represents M = k. As displayed in (17), to compute
the posterior model probability for m ε {1, ...,K}, we require the marginal likelihood,
f(y1:I |m,d1:I), which can be analytically intractable. Overstall et al. (2018) proposed the
use of normal-based Laplace approximations to approximate distributions of interest for
static Bayesian designs. Using this approach, the marginal likelihood can be constructed by
using only the posterior mode and the Fisher information. The posterior mode for model
m, θ̂m(y1:I), can be computed by θ̂m(y1:I) = arg max

θm
f(y1:I |m,θm,d1:I)π0(θm|m). Let

I(θm|m) denote the Fisher information for θm given m and H(θm;m) denote the Hessian
of the negative log posterior of θm (for a given model m). The covariance of the Laplace
approximation is given by

Σ̂m(y1:I) = H(θ̂m(y1:I);m)−1,

where

H(θm;m) = I(θm|m)− ∂2 log π0(θm|m)

∂θmθTm

= Ey1:I |m,θm

[
∂ log f(y1:I |m,θm,d1:I)

∂θm

∂ log f(y1:I |m,θm,d1:I)
∂θTm

]
− ∂2 log π0(θm|m)

∂θmθTm
.

The Laplace approximation to the marginal likelihood is given by

f̃(y1:I |m,d1:I) = (2π)
pm
2 |Σ̂m(y1:I)|

1
2 f(y1:I |θ̂m(y1:I),m,d1:I)π0(θ̂m(y1:I)|m),

where pm is the number of parameters in model m. In practice, we can estimate the rele-
vant quantities required for the Laplace approximation (i.e. the posterior mode, Hessian)
using a numerical optimiser. The estimate of the Hessian matrix is determined using finite
differencing. Using the Laplace approximation of the marginal likelihood, the posterior
model probabilities can be approximated by

π̃(m|y1:I ,d1:I) =
f̃(y1:I |m,d1:I)π0(m)∑K
k=1 f̃(y1:I |k,d1:I)π0(k)

,

where again the k inside the summation represents M = k. We can plug this approx-
imation into the model discrimination utility, given in (15), to obtain an approximated
utility.
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We can approximate the posterior distribution of the model parameters given the model
m and the data y1:I via a normal distribution, such that

θm|m,y1:I ,d1:I ∼ N
(
θ̂m(y1:I), Σ̂m(y1:I)

)
. (18)

Since we are approximating the posterior of θm with the multivariate normal distribution
displayed in (18), we can additionally consider approximating the prior distribution with
a multivariate normal distribution. The benefit of approximating both prior and posterior
in this way is that there is an explicit expression for the KLD between two multivariate
normal distributions. Thus we can approximate the parameter estimation utility as:

U(d1:I ,y1:I ,m) ≈

1

2

(
tr(Σ−11 Σ̂m(y1:I)) + (µ1 − θ̂m(y1:I))

TΣ−11 (µ1 − θ̂m(y1:I))− p+ log

(
det Σ1

det Σ̂m(y1:I)

))
,

where µ1 and Σ1 are the mean and covariance matrix of the prior distribution of θm, re-
spectively. This significantly simplifies the calculation of the parameter estimation utility.
As usual, the expected utility is estimated by Monte Carlo integration over joint samples
from m and y1:I . By using the utility approximations described above, this can be carried
out in a computationally efficient way. The only remaining objective is to maximise the
expected utility over the design space.

ACE Algorithm

To maximise the expected utility in a high dimensional design space, we use the approx-
imate coordinate exchange (ACE) algorithm (Overstall and Woods, 2017). Very briefly,
this methodology is a cyclic descent algorithm which maximises the expected utility for
each design point in turn in a series of optimisation steps. A Gaussian process emulator
is used to approximate the expected utility at each optimisation step in order to reduce
the number of expected utility calculations required. For a more detailed explanation of
the algorithm and the theory behind it, see Overstall and Woods (2017).
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Appendix B

In this section, we present the results of an additional simulation study. The purpose of
this simulation study is to explore the benefit of using the different utility functions for
our experimental goals within sequential design.

Simulation Study Details

For this simulation study, we have a similar set-up to the simulation study described in
Section 5 of the main text. However, instead of comparing the performance of sequential
and static optimal designs for the different utility functions, we are comparing the perfor-
mance of different utility functions on our experimental goals. We explore four different
methods of selecting the next design point: generate the design points randomly using a
uniform distribution over the discrete design space or find the optimal design with respect
to one of the three optimal design utilities defined in Section 4.3.

For each of the 4 models in Table 1 of the main paper, we generate 10 “true parameter
settings” from the posterior distribution based on the dataset from Papanikolaou et al.
(2016) (SMC was used to sample from the posterior). Therefore, we have a total of 40
different true parameter/model configurations for this study. For each of these true data
generating configurations, we repeat each optimal design algorithm 30 times. The total
number of observations collected in each run of these algorithms is I = 25.

For this simulation study, we consider the total exposure time of prey and predator to be
τ = 24 hours. The design points N0,i are members of the set D = {1, . . . , 300} and the
responses can assume the values ni ∈ {0, . . . , N0,i} for i = 1, . . . , I. The prior distribution
of the parameters is given by log(a) ∼ N(−1.4, 1.352), log(Th) ∼ N(−1.4, 1.352) and
log(λ) ∼ N(−1.4, 1.352). The parameter λ is only required in the beta-binomial models.
In addition, the prior model probabilities are equal across the K = 4 models.

We use the Bayesian D-posterior precision to quantify the precision of the true model
parameters. By comparing this across different design selection methods, we can identify
which method is the most efficient for parameter estimation. In a similar way, comparing
the model probabilities across different design selection methods enables us to compare and
assess the model discrimination power of each method. The subsequent section displays
the results of the simulation study.

Results

We begin our analysis of the simulation study results by examining the precision of our
parameters in the true model after the SMC design process. Figure 8 displays the dis-
tribution of the log Bayesian D-posterior precision at experiment number I = 25 across
the different design selection methods for each true model. It is apparent from Figure 8
that there is a noticeable pattern in the results across the different true models. The pa-
rameter estimation design selection method outperforms the other methods, as expected.
However, the total entropy (which incorporates model discrimination and parameter esti-
mation) only performs marginally worse overall compared with the parameter estimation
design. Furthermore, we find the model discrimination design does not perform well for
parameter estimation.
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(a) True Model 1 (b) True Model 2

(c) True Model 3 (d) True Model 4

Figure 8: Distribution of log Bayesian D-posterior precision of the true model across design
selection methods and different true models. RG, PE, MD, and TE represent randomly
generated, parameter estimation, model discrimination and dual-purpose (total entropy)
design selection methods, respectively.
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The distributions of posterior model probabilities at experiment number I = 25 for the
different design selection methods and each true model are shown in Figure 9. As we
would expect, the model discrimination design selection method outperforms the other
methods for all true models. The dual-purpose design is only marginally less effective.
It is evident from Figures 9(a) and 9(b) that for the randomly generated and parameter
estimation design selection methods, the algorithm struggles to discriminate between the
beta-binomial models when the true model is beta-binomial. Similarly, Figures 9(c) and
9(d) show that for the same two design selection methods, the SMC design algorithm does
not effectively discriminate between the binomial models when the true model is binomial.
The parameter estimation design selection method does not perform well for the goal of
model discrimination.

In both experimental goals the total entropy utility is only marginally less effective than the
single-purpose utilities. This suggests that this utility is beneficial for efficient parameter
estimation and model discrimination simultaneously.

Figure 10 displays the distribution of the log Bayesian D-posterior precision for each true
model at several iterations in the SMC design process. This enables us to identify the
experimental number at which the gain in parameter precision becomes negligible. The
results in Figure 10 are generated from running SMC using the parameter estimation
design selection method. Figure 10 suggests that the increase in precision for all true
models seems to decay exponentially.

Figure 11 shows the posterior model probabilities after 5, 10, 15, 20 and 25 experiments
have been run. The results in this figure are generated using the model discrimination
design selection method. Figure 11 enables us to identify how much gain in model dis-
criminative ability can be achieved with increasing the sample size for each true model. It
is evident that after 25 experiments, Models 3 and 4 can already be identified with high
probability.

The distributions of design points for the different utility functions and different true mod-
els are displayed in Figure 12. Analysing these distributions separately provides insight
into where we need to place design points to gain the most information about parame-
ters and the true model. The designs for our three proposed design selection methods
are predominantly bimodal with modes at boundaries of the design space. Therefore, it
appears selecting design points at the boundaries is optimal for parameter estimation and
model discrimination. The designs for parameter estimation are less concentrated in the
lower third of the design space than the model discrimination designs. However, the pa-
rameter estimation designs are still heavily right-skewed in the lower third. The design
point distribution for the dual-purpose design selection method seems to contain features
of both the parameter estimation and model discrimination design distributions. This is
expected as the dual-purpose utility is formed from the other two utilities. The model dis-
crimination designs differ quite strongly between the binomial and beta-binomial models
as shown in Figure 12. The beta-binomial designs have comparatively little mass at the
upper boundary (almost all mass at the lower boundary), the binomial designs have much
more mass at the upper boundary.
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(a) True Model 1

(b) True Model 2

(c) True Model 3

(d) True Model 4

Figure 9: Distribution of posterior model probabilities across design selection methods for
different true models. RG, PE, MD, and TE represent randomly generated, parameter
estimation, model discrimination and dual-purpose (total entropy) design selection meth-
ods, respectively. The x-axis on each plot represents the model number and corresponds
to the model numbers in Table 1. The y-axis shows the posterior model probability.
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(a) True Model 1 (b) True Model 2

(c) True Model 3 (d) True Model 4

Figure 10: Distribution of log Bayesian D-posterior precision across multiple iterations
of the SMC design process for different true models. Results are generated from running
SMC using the parameter estimation design selection method. The x-axis on each plot
represents the number of experiments that have currently been run (i.e. the number of
iterations of the SMC algorithm or number of observations collected).
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(a) True Model 1

(b) True Model 2

(c) True Model 3

(d) True Model 4

Figure 11: Distribution of posterior model probabilities across multiple iterations of the
SMC design process for different true models. Results are generated from running SMC
using the model discrimination design selection method. The x-axis on each plot repre-
sents the model number and corresponds to the model numbers in Table 1. The y-axis
represents the posterior model probability. The titles on each plot represent the number
of experiments that have currently been run (i.e. the number of iterations of the SMC
algorithm or number of observations collected).
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(a) Parameter Estimation Design Selection

(b) Model Discrimination Design Selection

(c) Dual-Purpose Design Selection

Figure 12: Distribution of design points after I = 25 experiments for the different true
models and the different design selection methods. The x-axis of each plot represents
the design points and the y-axis represents the relative frequency. The titles of the plots
indicate which model is the true model.
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