Novel Uses of Approximate Bayesian Computation for Prior Choice

Associate Professor Chris Drovandi

School of Mathematical Sciences
Queensland University of Technology
Australian Centre of Excellence for Mathematical and Statistical Frontiers

Joint work with David Nott, Kerrie Mengersen, Michael Evans, Wang Xueou
Approximate Bayesian computation (ABC) is used to sample from an approximate posterior when the likelihood is intractable.

Simple ABC methods estimate a posterior distribution based on simulation from a joint distribution on parameters and data.

Repeated ABC approximations of conditionals from the joint sample is easy.

These repeated ABC approximations of conditionals can be of:
- Parameters given data (posterior distributions)
- Data given parameters (approximate the data model).

We show how these features make ABC useful in prior choice.
Approximate Bayesian Computation

- Data y, parameter θ, data model $p(y|\theta)$, prior $p(\theta)$.
- y_{obs} is observed and then $p(\theta|y_{obs}) \propto p(\theta)p(y_{obs}|\theta)$.
- Let $d(\cdot, \cdot)$ be a distance defined in the data space and $\epsilon > 0$ be a tolerance.

Simple ABC: condition a joint sample (θ, y) on $d(y, y_{obs}) < \epsilon$ rather than on $y = y_{obs}$ (Pritchard et al., 1999)

- The distance is often constructed by reducing the data to a summary $S = S(y) \sim p(S|\theta)$ informative about θ and then $d(\cdot, \cdot)$ is defined in the space of summary statistics.
Repeated approximations of the posterior

Location model: $y \sim N(\theta, 1)$, $\theta \sim N(0, 1)$
Repeated approximations of the posterior

Location model: $y \sim N(\theta, 1), \quad \theta \sim N(0, 1)$
Repeated approximations of the posterior

Location model: \(y \sim N(\theta, 1), \ \theta \sim N(0, 1) \)
Repeated approximations of the posterior

Location model: $y \sim N(\theta, 1), \ \theta \sim N(0, 1)$
Repeated approximations of the data model
Repeated approximations of the data model
Regression adjustment ABC
Beaumont et al., 2002, Blum et al., 2010

- We use *simple* ABC methods since state of the art methods lose the property of allowing repeated approximations without more simulations.
- Simple ABC algorithms can be very inefficient if the prior is diffuse.
- Regression postprocessing adjustments which allow the ABC tolerance ϵ to be large are helpful.
Regression ABC
Beaumont et al., 2002, Blum et al., 2010

- Suppose \((\theta_i, S_i) \sim p(\theta)p(S|\theta)\) and the regression model

\[
\theta_i = \mu(S_i) + \sigma(S_i) \eta_i
\]

where \(\mu(\cdot)\) and \(\sigma(\cdot)\) are flexible mean and standard deviation functions, \(\eta_i\) are independent, mean zero, variance one.

- The empirical residuals are \(e_i = \hat{\sigma}(S_i)^{-1}(\theta_i - \hat{\mu}(S_i))\).

- Replace the original samples \(\theta_i\) with the fitted mean at \(S_{obs}\) plus the empirical residuals to get the adjusted sample

\[
\theta_i^a = \hat{\mu}(S_{obs}) + \hat{\sigma}(S_{obs})\hat{\sigma}(S_i)^{-1}(\theta_i - \hat{\mu}(S_i)).
\]

- Extensions with localization and weighting, multivariate \(\theta\).
Further refinements - regression
Beaumont *et al.*, 2002, Blum *et al.*, 2010

Location model: $y \sim N(\theta, 1)$, $\theta \sim N(0, 1)$
One way to perform Bayesian model checking is via a Bayesian p-value.

Define model checking statistic as $D(y)$, p-value defined as

$$p = P(D(y) \geq D(y_{obs})),$$

where $y \sim r(y)$ where $r(y)$ is some reference distribution.

E.g. $r(y) \equiv p(y) = \int p(\theta)p(y|\theta)d\theta$, prior predictive p-value.

Small p-value indicates a lack of model fit.
A value λ_0 is tentatively chosen on subjective grounds (the "base prior").

We may want to choose a λ such that $p(\theta|\lambda)$ is weakly informative compared to $p(\theta|\lambda_0)$.

Such priors may be particularly useful when there is a prior-data conflict with $p(\theta|\lambda_0)$ and a sensitivity analysis is wanted.
Prior-data conflict

\[y \sim \mathcal{N}(\theta, 0.25), \quad \theta \sim \mathcal{N}(0, 1) \quad y_{\text{obs}} = 8 \]
Evans and Moshonov (2006) suggest prior-data conflict checks can be done via prior predictive p-values with $D(y) = 1/p(S|\lambda)$ where S is a sufficient statistic.

In practice, S could be the MLE (asymptotically sufficient).

Evans and Jang (2010) consider distributions of prior predictive p-values for prior-data conflict checks as a way of measuring how informative one prior is relative to another.
ABC Computational approach

Need to approximate $p(S|\lambda)$ for many different S and λ. Use ABC regression methods.

Let $(\lambda_i, \theta_i, S_i), i = 1, \ldots, n$ be a sample from $p(\lambda)p(\theta|\lambda)p(S|\theta)$. Fit regression model:

$$S_i = \mu(\lambda_i) + \sigma(\lambda_i)\epsilon_i.$$

Then for any λ an approximate sample from $p(S|\lambda)$ can be obtained as

$$S_i^a(\lambda) = \hat{\mu}(\lambda) + \hat{\sigma}(\lambda)\hat{\sigma}(\lambda_i)^{-1}(S_i - \hat{\mu}(\hat{\lambda_i})), \ i = 1, \ldots, n$$

Use kernel estimate based on $S_i(\lambda)$ to approximate $p(S|\lambda)$.

Chris Drovandi, QUT
Then for a sample S_1^0, \ldots, S_n^0 from the prior predictive under base prior, approximate conflict p-values for $p(\theta|\lambda)$ by

$$
\hat{P}(S_j^0, \lambda) = n^{-1} \sum_{i=1}^{n} I(\hat{p}(S_i^a(\lambda)|\lambda) \leq \hat{p}(S_j^0|\lambda)), \ j = 1, \ldots, n.
$$

$\hat{P}(S_1^0, \lambda), \ldots, \hat{P}(S_n^0, \lambda)$ generates distribution of p-values for given λ. Weak informativity at level γ means that the γ quantile of p-value distribution for $p(\theta|\lambda)$ is greater than the corresponding γ quantile for $p_B(\theta)$.
Logistic regression example
Racine *et al.*, 1986

- Dose response modelling (bioassay data of Racine *et al.*, 1986).
- 5 animals at each of 4 dose levels exposed to a toxin and number dead recorded.
- Doses $x_1 < x_2 < x_3 < x_4$ (the x’s have been transformed to log scale and centred and scaled to have variance one).
- Response at dose i, $y_i \sim \text{Bin}(5, p_i)$, logit($p_i$) = $\beta_0 + \beta_1 x_i$.
- Prior $\beta_0 \sim N(0, \sigma_0^2)$, $\beta_1 \sim N(0, \sigma_1^2)$.
- Base prior: $\sigma_0 = 10$, $\sigma_1 = 2.5$. Alternative priors: $\lambda = (\sigma_0, \sigma_1) \in [0.1, 10] \times [0.1, 20]$.
Logistic regression example
Racine et al., 1986

- Use the MLE as an (asymptotically) sufficient statistic.
- Look at degree of weak informativity of the alternative prior versus the base prior at level 0.05 as λ varies.
Logistic regression example
Racine et al., 1986
Can we use model checking for elicitation?

- Often the information you want to put into a prior may fall far short of determining the prior uniquely.
- Consider prior-data conflict checks for hypothetical data as providing constraints.
- For summary statistics S^1, \ldots, S^k, certain values $S^1_0, \ldots S^k_0$ should be considered as either "surprising" or "unsurprising" where that means failing or passing a prior-data conflict check.
- Look at how prior-data conflict p-values change with hyperparameters to inform prior choice.
Logistic regression example again
Racine et al., 1986

- In this example consider Cauchy priors on β_0 and β_1 with location zero and scale λ_1 and λ_2 respectively.
- Consider using ABC to approximate how a prior-data conflict p-value changes as $\lambda = (\lambda_1, \lambda_2)$ changes.
Logistic regression example again
Racine et al., 1986

- Conflict check: summary statistic S that is the sum of the variances of the binomial responses for the fitted model based on the MLE (or some approximation).
- Conflict p-values for hypothetical observations $S = 0.198$ and $S = 1.974$.
- We want a "reasonable" λ to:
 - fail the conflict check for $S = 0.198$ (the value of S that would result from fitted probabilities of 0.01 or 0.99 at each covariate)
 - pass the check for 1.974.
- A default prior suggested in the literature (Gelman et al., 2008) has $\lambda_1 = 10$ and $\lambda_2 = 2.5$.
Logistic regression example again
Racine et al., 1986

\[S = 0.198 \]

\[S = 1.974 \]
Model checks for elicitation

- When the number of hyperparameters and model checks is large then it is not feasible to plot conflict p-values over a grid of hyperparameter values.

- In our paper we use a method called history matching to efficiently explore hyperparameter space.

- In the paper we consider an example with 4 hyperparameters.
Example: sparse signal shrinkage priors

Prior Choice via predictive model checking

Example
Conclusion

- Regression ABC methods are very useful for certain repeated calculations such as those arising in
 - Prior elicitation or choice of a weakly informative prior
 - Calibration of predictive p-values under the prior
- We haven’t assumed that the likelihood is intractable but the methods described might be useful in that case.
References

