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Background Bayesian Statistics

Bayesian Statistics

In Bayesian statistics we are interested in sampling from the posterior:

p(θ|y) ∝ p(y |θ)p(θ),

where p(y |θ) is the likelihood and p(θ) is the prior.
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Background Markov Chain Monte Carlo

Markov Chain Monte Carlo

Construct ergodic Markov chain with invariant distribution p(θ|y)
(Metropolis et al., 1953)

A common MCMC algorithm is Metropolis Hastings (MH) MCMC,
where proposals θ∗ are accepted with probability

min

(
1,

p(y |θ∗)p(θ∗)q(θ|θ∗)
p(y |θ)p(θ)q(θ∗|θ)

)
,

where q(·) is the proposal density.

For complex models, p(y |θ) may not be computationally feasible.
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Background Approximate Bayesian Computation

Approximate Bayesian Computation

Approximate Bayesian computation (ABC1) is current state-of-the-art
likelihood-free Bayesian method.

ABC prefers parameter values that simulates x close to y , in terms of
summary statistics S(·).

Targets posterior conditional on observed summary
p(θ|sy ) ∝ p(sy |θ)p(θ) where sy = S(y).

Estimates p(sy |θ) non-parametrically via simulation2.

Choice of summary function S(·) trade-off between information loss
and dimensionality.

1
Handbook of Approximate Bayesian Computation. Eds: Sisson, Fan, Beaumont. CRC Press.

2
Blum 2010. Approximate Bayesian Computation: a nonparametric perspective. JASA.
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Background Approximate Bayesian Computation

Approximate Bayesian Computation

ABC Approximation of likelihood p(sy |θ)

Simulate n iid datasets, denoted x1:n = (x1, ..., xn), from the model
based on θ.
Calculate n sets of summary statistics, s1:n = (s1, ..., sn)

The intractable p(sy |θ) is replaced with the estimated ABC
likelihood,

p̂ε(sy |θ) =
1
n

n∑
i=1

Kε (ρ(sy , si)) .

ρ(·) is called the discrepancy function
Kε(·) is a kernel weighting function with bandwidth ε
ε is called the ABC tolerance (bias/variance trade-off)
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Background Approximate Bayesian Computation

Approximate Bayesian Computation

Disadvantages

Highly sensitive to choice of tuning parameter ε, ρ(·) and to a
lesser extent Kε(·)

No standard way to select ε or ρ(·).

Suffers from curse of dimensionality with respect to size of
summary statistic
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Motivating Example Toad Example

Motivating Example - Fowler’s Toads

Individual-based model1of a species called Fowler’s Toads (Anaxyrus
fowleri).

Model assumes that a toad hides in its refuge site in the daytime and
moves to a randomly chosen foraging place at night.

GPS location data are collected on nt toads for nd days (nt = 66 and
nd = 63 here). Denote matrix Y .

Y is summarised to 4 sets comprising the moving distances for time
lags of 1,2,4,8 days.

1
Marchand et al 2017. A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a

population of Fowler’s toads. Ecological Modelling.
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Motivating Example Toad Example

Fowler’s Toads – Model

For each toad, first generate an overnight displacement, ∆y .
Displacement assumed to follow Lévy-alpha stable distribution family
with parameters α and η.

Total returning probability is a constant p0.
Model 1: Random return to site.
Model 2: Nearest return
Model 3: Probability of return to site depends on distance (extra
parameter d0). Not considered in this talk.

Parameter of interest θ = (α, η, p0). Priors from Marchand et al:
α ∼ U(1,2), η ∼ U(10,100) and p0 ∼ U(0,1).
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Motivating Example Toad Example

Fowler’s Toads – Summary Statistic Selection

Number of returns for all four time lags (defined as distance < 10m).

For the non-returns we consider log difference between adjacent
p-quantiles with p = 0,0.1, . . . ,1 and also the median. Repeat for each
time lag.

Roughly 40 statistics. Difficult for conventional ABC to deal with.
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Bayesian Synthetic Likelihood Bayesian Synthetic Likelihood

Parametric Alternatives

It might be possible to overcome some drawbacks of ABC by using a
parametric approximation to p(sy |θ) instead of the non-parametric
approximation used by ABC.
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Bayesian Synthetic Likelihood BSL

Bayesian Synthetic Likelihood

The synthetic likelihood (SL) method1uses a multivariate normal
approximation: p(sy |θ) ≈ N (sy ;µ(θ),Σ(θ)).

Suitable when summary statistics are subject to the central limit
theorem

Transformations to multivariate normality of summary statistics

Summary statistics from indirect inference

Popular & convenient choice

We developed a Bayesian version of synthetic likelihood called BSL2.
1

Wood 2010. Statistical inference for noisy nonlinear ecological dynamic systems. Nature.
2

Price et al 2018. Bayesian Synthetic Likelihood. JCGS.
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Bayesian Synthetic Likelihood BSL

Bayesian Synthetic Likelihood

Basic method
Simulate n iid datasets from the model based on θ
Calculate the n sets of summary statistics
Calculate the sample mean, µn, and sample covariance matrix,
Σn, of the set of simulated summary statistics
The BSL replacement likelihood is

N (sy ;µn(θ),Σn(θ)).

Only tuning parameter is n (we find weak dependence on this
choice). Choose n to maximise computational efficiency.
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Bayesian Synthetic Likelihood BSL

Asymptotic Properties of BSL1

Assuming summary stats follow a CLT (and other mild conditions):

SL posterior mean is consistent and asymptotically normal.

Asymptotically, BSL is more efficient than ABC.

1
Nott et al 2019. Bayesian inference using synthetic likelihood: asymptotics and adjustments. arXiv:1902.04827
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Bayesian Synthetic Likelihood Drawbacks

Drawbacks of BSL

The distribution of the summary statistic must be roughly normal.

The number of simulations per iteration, n, needs to be large
depending on the size of the summary statistic to obtain a good
sample covariance estimate.

Reliance on MCMC to explore parameter space (not ideal in high
dimensions).

Computationally inefficient when model cannot recover observed
statistic (e.g. model misspecification).
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Extension 1 BSL with Shrinkage

Shrinkage Covariance Estimation

When sample size n is small, the sample covariance matrix can have
poor properties.

We propose to use shrinkage covariance matrix estimation to improve
efficiency of BSL, e.g. the following estimator1

Σ̂γ = D̂1/2(γĈ + (1− γ)I)D̂1/2

where Ĉ is sample correlation matrix, D̂ is the diagonal matrix with
diagonal entries same as Σ̂ and γ is the shrinkage parameter.

Amount of shrinkage trades-off the accuracy of the posterior
distribution (relative to BSL) against computational efficiency.

1
Warton 2008. Penalized normal likelihood and ridge regularization of correlation and covariance matrices. JASA.
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Extension 2 Whitening Transformation

BSL with Whitening Transformation

Warton shrinkage is much more effective if summaries have weak
correlation.

Assume s ∼ N (0,Σ). We1consider the following transformation to
summaries.

Let s̃ = Ws with W = Λ−1/2U> where Λ and U come from
eigendecomposition of Σ (PCA whitening).

s̃ is then standard Gaussian. The Warton shrinkage is applied to s̃.

Σ∗ is obtained by many off-line simulations from point estimate θ∗. We
find that PCA whitening decorrelates well away from θ∗.

1
Priddle et al 2019. Efficient Bayesian synthetic likelihood with whitening transformations. https://arxiv.org/abs/1909.04857.
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Extension 2 Whitening Transformation

Results - Toad Example (Model 1 Simulated Data)

Warton

tv =

0.49

1.4 1.5 1.6 1.7 1.8 1.9
30

32

34

36

38

40

BSL, n = 500

 = 0, n = 43

true

Warton

tv =

0.47

1.4 1.5 1.6 1.7 1.8 1.9
0.56

0.58

0.6

0.62

0.64

0.66

p 0

BSL, n = 500

 = 0, n = 43

true

Warton

tv =

0.5

30 32 34 36 38
0.56

0.58

0.6

0.62

0.64

0.66

p 0

BSL, n = 500

 = 0, n = 43

true

PCA Whitening

tv =

0.2

1.4 1.5 1.6 1.7 1.8 1.9
30

32

34

36

38

40

BSL, n = 500

 = 0, n = 42

true

PCA Whitening

tv =

0.15

1.4 1.5 1.6 1.7 1.8 1.9
0.56

0.58

0.6

0.62

0.64

0.66

p 0

BSL, n = 500

 = 0, n = 42

true

PCA Whitening

tv =

0.2

30 32 34 36 38
0.56

0.58

0.6

0.62

0.64

0.66

p 0

BSL, n = 500

 = 0, n = 42

true

Chris Drovandi AutoStat 2019 18 / 28



Extension 3 Semi-parametric BSL

Semi-parametric BSL

We improve flexibility of synthetic likelihood by using a semi-parametric
Gaussian Copula model (called semiBSL1).

We use a kernel density estimate for the marginals. Capture
dependence with Gaussian copula.

No additional tuning parameters and seemingly does not require any
additional model simulations compared to BSL.

1
An et al 2019. Robust Bayesian Synthetic Likelihood via a Semi-Parametric Approach. STCO.
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Extension 4 Variational Bayes Synthetic Likelihood

Variational Bayes Synthetic Likelihood

Can significantly reduce number of model simulations replacing
MCMC with Variational Bayes (VB).

Simulation problem→ optimisation problem. E.g. finding the best
N (µ,Σ) representation of the posterior.

We have two papers12 developing VB methods using synthetic
likelihood.

Improves efficiency and better at dealing with high-dimensional
parameter spaces. But resorts to Gaussian approximation of
(approximate) posterior.

1
Ong et al 2018. Variational Bayes with synthetic likelihood. STCO.

2
Ong et al 2018. Likelihood-free inference in high dimensions with synthetic likelihood. CSDA.
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Extension 5 BSL for Model Misspecification

BSL for Model Misspecification

BSL performs inefficiently when model is not compatible with observed
statistic.

We are interested in modifications to the synthetic likelihood that allow
BSL to run in such cases.

Also interested in identifying which statistics the model is not
compatible with – might inform model refinement. 1

1
Frazier and Drovandi 2019. Robust Approximate Bayesian Inference with Synthetic Likelihood.

https://arxiv.org/abs/1904.04551
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Extension 5 BSL for Model Misspecification

Adjusted Synthetic Likelihoods

Consider two adjusted synthetic likelihoods for detecting incompatible
summaries by introducing auxiliary variables γ of dimension dim(s).
1. Variance Inflation (R-BSL-V):

Vm(ζ) := Σm +


[Σm(θ)]11γ

2
1 0 . . . 0

0 [Σm(θ)]22γ
2
2 . . . 0

... . . .
. . .

...
0 · · · · · · [Σm(θ)]dηdη

γ2
dη

 ,

2. Mean Adjustment (R-BSL-M):

φm(ζ) = µm(θ) + diag(Σ
1/2
m (θ))Γ,

where Γ is vector of γ’s.
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Extension 5 BSL for Model Misspecification

Theoretical Properties

If the model is compatible, what behavior should we expect from the
R-BSL approach?

Under compatibility and other mild assumptions, we show that the
posterior for Γ converges to the prior.

Thus incompatibility can be detected by departures from the prior.
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Extension 5 BSL for Model Misspecification

Toad: Results for Simulated Data from Model 2

Consider model 2 as Marchand et al demonstrate that this model
provides worse fit to data.
The MCMC acceptance rates for BSL, R-BSL-M and R-BSL-V are
11%, 9% and 22%, respectively (n = 300 for all methods).
Posteriors for γ:
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Extension 5 BSL for Model Misspecification

Toad: Results for Simulated Data from Model 2
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Univariate posterior distributions for the parameters when applying BSL
(sold), R-BSL-V (dash) and R-BSL-M (dot-dash) to simulated data for the
toad example. True parameter values are shown as crosses.
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Extension 5 BSL for Model Misspecification

Toad: Results for Real Data (Model 2)

MCMC acceptance rates of 9% (BSL with n = 2000), 7% (R-BSL-M
with n = 500) and 15% (R-BSL-V with n = 500). R-BSL-V has roughly
1 order of magnitude computational efficiency gain over BSL.
Posteriors for γ:
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Close R Package

R Package

We have an evolving R package for BSL:

https://cran.r-project.org/web/packages/BSL/index.html

Associated paper:

https://arxiv.org/abs/1907.10940
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