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Abstract

Sequestering carbon into the soil can mitigate the atmospheric concentration of

greenhouse gases, improving crop productivity and yield financial gains for farmers

through the sale of carbon credits. In this work, we develop and evaluate advanced

Bayesian methods for modelling soil carbon sequestration and quantifying uncertainty

around predictions that are needed to fit more complex soil carbon models, such as

multiple-pool soil carbon dynamic models. This paper demonstrates efficient computa-

tional methods using a one-pool model of the soil carbon dynamics previously used to

predict soil carbon stock change under different agricultural practices applied at Tar-

lee, South Australia. We focus on methods that can improve the speed of computation

when estimating parameters and model state variables in a statistically defensible way.

This paper also serves as a tutorial on advanced Bayesian methods for fitting complex

state-space models, which will be of interest to soil scientists and other environmental

scientists more generally.

Keywords: Soil carbon sequestration; State-space model; Rao-Blackwellised particle filter; Cor-

related pseudo-marginal method.

∗mohammadjavad.davoudabadi@hdr.qut.edu.au

1



1 Introduction

Global carbon cycling describes the exchange of carbon between and within five main pools: earth’s

oceans, its atmosphere, vegetation, fossil fuels, and its soil. Increases in atmospheric CO2 and other

greenhouse gases are considered responsible for global climate change. Soils store approximately

fourfold more carbon than the atmosphere and sixfold more than earth’s vegetation (Ahrens et al.,

2014). Therefore, it is important that we have reliable statistical approaches for monitoring this

fundamentally important carbon pool. Large-scale transfer of carbon from earth’s soil to the

atmosphere not only affects global climate change, but also has the potential to globally reduce

soil quality and agricultural productivity (Sanderman and Chappell, 2013). Accurate models of

soil carbon dynamics and sequestration for forecasting future changes are useful tools to help

understand these systems and potentially maintain or increase soil carbon stocks.

Soil carbon sequestration, has many benefits: reducing the atmospheric concentration of green-

house gases, improving agricultural productivity, and yielding financial gains for farmers. There

have been numerous studies in which researchers have used models to predict soil organic carbon

change (Cable et al., 2009; Clifford et al., 2014; Huang et al., 2017; Luo et al., 2016; Skjemstad

et al., 2004; Stamati et al., 2013). Challenges in modelling the soil carbon cycle include our im-

perfect understanding of the carbon cycle and sequestration process, and that the volume and

quality of data are often limited. Assessing uncertainty in models is important because it affects

parameter estimates, model inputs, and ultimately, model predictions. A number of studies have

been conducted into quantifying uncertainty in soil carbon model outputs, typically under simu-

lated climate change or via a sensitivity analysis by running models for different sets of parameter

values (Juston et al., 2010; Paul et al., 2003; Stamati et al., 2013). More recently, uncertainty

quantification in model inputs, model parameters, and dynamics has been conducted by Clifford

et al. (2014).

Quantifying trends in soil organic carbon (SOC) stocks sometimes needs measurements over

more than a decade because of slow rates of temporal change as well as temporal variability in

flows of carbon into and out of the soil introduced by environmental factors and management

practices (Sanderman and Baldock, 2010). Because such data can be lacking, computer-simulation

experiments performed with models are used to explore temporal dynamics of soil carbon and

the impact of management practice in silico. Such models include RothC (Parton et al., 1988),

and Century (Jenkinson et al., 1987) which were developed in response to this requirement of a

2



long-term sampling period. These models have been used to estimate changes in soil carbon pools

derived by variations in climatic conditions (Senapati et al., 2013; Wan et al., 2011) or variations in

applied agricultural management practices (Li Liu et al., 2009, 2011; Robertson and Nash, 2013).

It is noteworthy that these models differentiate soil carbon into a series of conceptual pools. The

carbon contained within a pool is considered homogeneous in its physical and chemical attributes

and thus process dynamics; however, across pools, significant differences in these traits exist (Elliott

et al., 1996).

Some effort has been made to quantify uncertainties in modelled carbon stocks using statistical

models, embodying a set of statistical assumptions about the data, as a formal approach to fitting

the model and estimating uncertainty (Jones et al., 2007; Koo et al., 2007; Post et al., 2008).

Clifford et al. (2014), addressed uncertainties using a physical-statistical model for carbon dynamics

within a Bayesian hierarchical modelling (BHM) framework, and demonstrated this approach for

a one-pool model. The one-pool model of Clifford et al. (2014) treats the soil carbon as a single

pool of carbon undergoing exponential decay with carbon being lost to the atmosphere. Since

the carbon stock cannot be observed directly (i.e. without error), it can be considered a latent

variable that evolves with time as a Markov chain, meaning that it can be modelled as a state-

space model. State-space modelling allows us to estimate unobserved state variables, unknown

parameters, and future observations of the model from observed data. In Clifford et al. (2014),

this model was fit using a particle Markov chain Monte Carlo (pMCMC, (Andrieu et al., 2010))

algorithm. They used the most standard pMCMC algorithm in the literature. More specifically, it

used the bootstrap particle filter for estimating the likelihood for a given parameter value, and used

the particle marginal Metropolis-Hastings (PMMH) algorithm to explore the parameter space.

In this paper, we explore how the modelling approach employed by Clifford et al. (2014) can

be implemented with greater computational efficiency (improve the speed of computation) using

more advanced Bayesian algorithms for state-space models. These advanced Bayesian methods

can play a significant role in fitting more complex soil carbon models, such as multiple-pool soil

carbon dynamic models. Here we will use the one-pool model of Clifford et al. (2014) to illustrate

the methods and their benefit. We demonstrate that these advanced methods lead to substantial

computational efficiency for model fitting and parameter estimation compared to the methods

employed in Clifford et al. (2014). This is important as it demonstrates that such methods have the

potential to be used as part of decision-support systems, to rapidly obtain insights using standard

computer hardware. In addition to the aforementioned aim, this paper can also be considered as a
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tutorial on more advanced Bayesian state-space model fitting methods for soil scientists and other

environmental scientists working with similar classes of models.

The rest of the paper is organised as follows. In Section 2, the state-space model as well as the

Kalman filter and particle filters are introduced. The PMMH algorithms and the implementation

of the aforementioned methods on the model are presented in Section 3. Section 4 defines the soil

carbon model of Clifford et al. (2014), which motivates the paper. The results are shown in Section

5 with a focus on quantities that may be of interest to a scientist or landowner interested in soil

carbon sequestration. The paper concludes with a discussion in Section 6.

2 State-space model

The state-space model uses indirectly observable variables known as state (or latent) variables and

observable measurement variables to describe a system. These state variables cannot be measured

directly but can be estimated based on observational data that depend on the state variables

(Andrieu et al., 2010; Fearnhead and Künsch, 2018). The values of state variables evolve through

time in a way that depends on the past state variable values and external input variables. The main

goal of state-space modelling is to gain knowledge of the latent states X given the observations

Y. Therefore, the aim is producing estimators for the state variable X(t), given the observed data

Y1:s = {Y(1), . . . , Y(s)}. In this case, if s < t, the problem is called prediction or forecasting, if s = t,

the problem is known as filtering, and the problem is called smoothing when s > t (Shumway and

Stoffer, 2000, Chapter 6). In addition to producing these point estimates, measuring their precision

is also important. This can be accomplished using approaches such as the Kalman filter and particle

filters.

A generic representation of a state-space model with Gaussian noise is:

X(t) = f(X(t−1)) +Bu(t) + ε(t)

Y(t) = g(X(t)) + ν(t);

(1)

where ε(t) ∼ N(µ, σ2
X) and ν(t) ∼ N(λ, σ2

Y ) are state and measurement noise components, respec-

tively (Shumway and Stoffer, 2000, Chapter 6). The control-input matrix B is applied to a known

vector of inputs u(t), also f and g are functions of X(t−1) and X(t), respectively. The first equation

is called the state transition equation (state model) and the second one is the observation equation
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(observation or measurement model) (Fearnhead and Künsch, 2018). In general, ε(t) and ν(t) need

not be Gaussian nor additive, but in many models this is assumed to be the case (Andrieu et al.,

2010). A soil carbon dynamics model can be considered as an example of a state-space model. The

observation model in this setting includes the measured values of SOC at time t (i.e. Y(t)) condi-

tioning on unobserved masses of SOC in various pools and the process model includes unobserved

masses of SOC (i.e. X(t)) in various pools conditioning on its past value. These models can be

formed from some sub-models including linear and non-linear sub-models. The general state-space

model can also be represented graphically as depicted in Figure 1.

Figure 1: Graphical representation of a state-space model.

To calculate the filtering distribution of X(t) (i.e. p(X(t)|Y1:t)) we can use Bayes rule as shown

in (2)

p(X(t)|Y1:t) ∝ p(Y(t)|X(t))

∫
p(X(t)|X(t−1))p(X(t−1)|Y1:t−1)dX(t−1); (2)

where p(X(t)|X(t−1)) is the transition density and p(Y(t)|X(t)) is the observation density (Andrieu

et al., 2010). When p(X(t)|Y1:t) and the right side of (2) do not have closed form expressions,

some methods such as particle filters (PFs) can be used to approximate them. When the model

is a linear-Gaussian, the Kalman filter provides closed-form solution results. In the next section

we introduce the Kalman filter. It is worth noting that the state-space model shown in equation

(1) often depends on an unknown static parameter θ, as is the case for our application. For the

remainder of this section, we assume the static parameter θ is fixed, and thus drop it for notational

convenience. In Section 3, we re-introduce θ into the notation.
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2.1 Kalman filter

Filtering, also known as data assimilation in geophysics, is an engineering term which is used to

extract information of a signal from noisy and partial observations and that is mostly undertaken

using state-space models. It was conceived by Rudolf Emil Kalman in the 1960s (Kalman, 1960),

who used the word filter, since it is a process of filtering out the noise from noisy data to find

the best estimate. The method is a recursive filtering algorithm for linear-Gaussian state-space

models that allows new measurements to be processed as they arrive, making it suitable for online

applications (Künsch, 2013). There are many methods for evaluating state-space models and the

most common is the Kalman filter. The KF is an optimal estimator in the sense of minimising the

variance of the estimated states.

The main advantage of this filter is that it provides closed-form solution results for linear-

Gaussian models, which occurs when the general model in (1) has the form:

X(t) = AX(t−1) +Bu(t) + ε∗(t)

Y(t) = CX(t) + ν∗(t);

where ε∗(t) ∼ N(0,Q∗), ν∗(t) ∼ N(0,R∗), A is the state-transition matrix, the control-input matrix

B is applied to a known vector of inputs u(t), and C is the observation matrix (Carter and Kohn,

1994; Orlande et al., 2011; Wikle and Berliner, 2007). The Kalman filter includes two steps:

prediction and update (Orlande et al., 2011). The prediction step is:

Xt−1
(t) = AX̂(t−1) +Bu(t)

P t−1
(t) = AP̂ (t−1)A

′
+Q∗;

where A
′

is the transpose of matrix A, and the update step is:

K(t) = P t−1
(t) C

′
(CP t−1

(t) C
′
+R∗)−1

X̂(t) = Xt−1
(t) +K(t)(Y(t) −CXt−1

(t) )

P̂ (t) = (I −K(t)C)P t−1
(t) .

The difference (Y(t) − CXt−1
(t) ) is called the residual and I is the identity matrix of appropriate

dimension. Matrix K(t) is called the Kalman gain, R∗ and P̂ (t) are the covariance matrix of the
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measurement noise and the updated estimate covariance matrix of the process noise, respectively

(Cressie and Wikle, 2015; Orlande et al., 2011). X̂(t) is our best estimate of the state vector at

time t given all observations up to and including time t, and Xt−1
(t) and P t−1

(t) are the expectations

of state variable and the process noise, respectively given all observations up to and including time

t − 1. The KF method is presented in Algorithm 1, here MVN(µ,Σ) denotes the multivariate

normal density with mean vector µ and covariance matrix Σ.

Algorithm 1 Kalman filter (KF) algorithm

1: Initialize with initial state X̂(0) = x(0) and P̂ (0) = Q∗ at t = 0;
2: for t = 1, ...,T do
3: X t−1

(t) = AX̂(t−1) +Bu(t), State estimate extrapolation;

4: P t−1
(t) = AP̂ (t−1)A

′
+Q∗, State covariance extrapolation;

5: K(t) = P t−1
(t) C

′
[R∗ +CP t−1

(t) C
′
]−1, Kalman gain matrix;

6: X̂(t) = X t−1
(t) +K(t)[Y(t) −CX t−1

(t) ], State estimate update;

7: P̂ (t) = [I −K(t)C]P t−1
(t) , State covariance update;

8: Compute the log-likelihood contribution, lKF
(t) , at time t through the density

MVN(Y(t) −CX t−1
(t) ,R

∗ +CP t−1
(t) C

′
);

9: The complete log-likelihood can be calculated as L =
∑

t l
KF
(t)

In non-linear cases, the extended Kalman filter (EKF) can be applied to transform an estimate

of the current mean and covariance into a linear form. It is not an optimal estimator as it tends

to underestimate the true value of the covariance matrix and risks becoming inconsistent in the

statistical sense without the addition of “stabilising noise”, so it is only reliable for systems that

are almost linear (Huang et al., 2008; Ljung, 1979). An improved form of the EKF is known

as the unscented Kalman filter (UKF) that picks minimal sample points around the mean by

using a deterministic sampling technique and propagating the sample points through the non-

linear functions so that a new mean and covariance estimate are formed. The UKF also has to

apply linearisation, which illustrates the difficulty in implementing any type of Kalman filter for

non-linear state transitions (Grewal, 2011). More generally, particle filters, introduced in the next

subsection, can be used for non-linear and/or non-Gaussian state-space models, without making

any approximation to the model.

2.2 Particle filters

Particle filter methods also known as sequential Monte Carlo (SMC) methods are a class of Monte

Carlo methods used broadly in Bayesian inference and signal processing (Fearnhead and Künsch,
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2018; Liu and Chen, 1998). A PF provides a particle approximation of the sequence of filtering

distributions, p(X(t)|Y1:t) for t = 1, . . . , T . As a by-product, it also produces an unbiased estimate

of the marginal density of the observed data, p(Y1:T ) (Fearnhead and Künsch, 2018). This term

is often referred to as the marginal likelihood, as the latent states X1:T have been integrated out.

However, we refer to it simply as the likelihood here, since as mentioned earlier, it is conditional

on a fixed value of the static parameter.

Assume that we have a particle representation of size N of the filtering distribution at time

t− 1, p(X(t−1)|Y1:t−1) at time t− 1:

p̂(X(t−1)|Y1:t−1) =

N∑
k=1

W k
(t−1)δXk

(t−1)
(X(t−1)),

where W k
(t−1) and Xk

(t−1) are the normalised weight and location of particle k, respectively, and

δX(0)
(·) denotes the Dirac delta mass located at X(0) (Andrieu et al., 2010; Fearnhead and Künsch,

2018). The particle filter provides a mechanism for updating this empirical approximation so that

it represents the next filtering distribution p(X(t)|Y1:t) in light of the new observation Y(t).

Different particle filters are distinguished by how the empirical approximation is updated.

There are now many sophisticated particle filters in the literature, such as the auxiliary particle

filter (Pitt and Shephard, 1999), Rao-Blackwellised particle filter (Doucet et al., 2000) and Gaussian

particle filter (Kotecha and Djuric, 2003). However, the bootstrap particle filter of (Gordon et al.,

1993), discussed next, has the simplest form.

2.2.1 Bootstrap particle filter

In the sampling importance resampling (SIR) algorithm, the particle values for time t are proposed

according to a user-specified proposal distribution, X(t) ∼ q(·|X(t−1)). The updated particle values

are then re-weighted using arguments from importance sampling

wk(t) = W k
(t−1)

p(Y(t)|X(t))p(X(t)|X(t−1))

q(X(t)|X(t−1))
, t = 1, . . . , T, and k = 1, . . . , N ; (3)

where wk(t) are unnormalised weights at time t and W k
(t) =

wk
(t)∑

j w
j
(t)

(Doucet and Johansen, 2009;

Fearnhead and Künsch, 2018). After normalisation, a weighted sample from p(X(t)|Y1:t) is pro-

duced. These steps can be repeated until all data have been processed. However, the particle

weights have a tendency to become degenerate; eventually placing all weight on a single particle,
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resulting in a poor empirical approximation of the filtering distribution (Fearnhead and Künsch,

2018). This problem can be mitigated by including a resampling step at each iteration. This step

selects N particle values randomly with replacement from the current particle set, where the prob-

ability of selecting a particular particle is given by its corresponding normalised weight (Andrieu

et al., 2010; Doucet and Johansen, 2009; Fearnhead and Künsch, 2018). The resampling step has

the effect of replicating particle values with high weight, and terminating those with low weight.

After resampling, the normalised weights are re-initialised at 1/N for each particle (Fearnhead and

Künsch, 2018). If the variance of unnormalised weights of particles at a specific time is small, the

resampling step at that time might be unnecessary, as it introduces some additional variance into

the estimator (Doucet and Johansen, 2009). More precisely, this is often assessed by looking at

the effective sample size (ESS) criterion. The ESS provides a means of comparison between our

correlated samples and a set of independently drawn samples. This is given by

ESS =

 N∑
j=1

(W j
(t))

2

−1

.

We resample only when it is below a pre-specified threshold (typically N
2 ) (Doucet and Johansen,

2009). When the resampling step is omitted in each time step, we are required to store the

normalised weights as these are an important quantity on the right-hand side of equation (3).

When the resampling step is used at every time step, the W k
(t−1) on the right-hand side of (3)

plays no role in the importance sampling re-weighting since they remain uniform throughout the

algorithm.

The bootstrap particle filter (BPF) is a special case of the SIR, where the transition density is

selected as the proposal density, q(X(t)|X(t−1)) = p(X(t)|X(t−1)). With this choice, the importance

weights simplify to:

wk(t) = W k
(t−1)p(Y(t)|X(t)), t = 1, . . . , T, and k = 1, . . . , N.

The BPF algorithm is provided in Algorithm 2. In this algorithm, since the resampling step

is applied at each time step, the normalised weights at t − 1 are omitted from the weight update

at t. The appealing features of this PF are that it is simple to implement and widely applicable,

since it does not require evaluation of the transition density p(X(t)|X(t−1)), but simply the ability

to simulate from it.
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However, a drawback of the bootstrap particle filter is that, since the proposal is the transition

density, the propagated particles Xk
(t), k = 1, . . . , N may not be compatible with the next observa-

tion Y(t). This can lead to the particle system degenerating quickly (Künsch, 2013). One way to

overcome this is to use a larger number of particles N , but this can be computationally burden-

some. In the next subsection, we describe the auxiliary particle filter, which explicitly accounts

for the next observation Y(t) when making proposals.

Algorithm 2 Bootstrap particle filter (BPF) algorithm

1: Initialise X∗k
(0) ∼ p(X(0)) for k ∈ {1, 2, . . . , N};

2: for t = 1, ...,T do
3: for k = 1, ...,N do
4: Draw sample Xk

(t) ∼ p(X(t)|X∗k
(t−1));

5: Calculate weights wk(t) = p(Y(t)|Xk
(t));

6: Estimate the log-likelihood component for the tth observation, l̂(t) = log

(∑
j w

j
(t)

N

)
;

7: Normalise weights W k
(t) =

wk(t)∑
j w

j
(t)

for k ∈ {1, 2, . . . , N};

8: Resample with replacement N particles, X∗k
(t) (k ∈ {1, 2, . . . , N} and X∗k

(t) ∈
{Xk

(t)}Nk=1), based on the normalised importance weights;

9: Estimate the overall log-likelihood L =
∑

t l̂(t).

2.2.2 Auxiliary particle filter

In the presence of outliers or small variances of observation errors, the BPF can be very inefficient

and the weights will be extremely unequally distributed. Therefore, a huge number of particles

can be required to gain sensible estimation results (Pitt and Shephard, 1999). The compatibility

between propagated particles at time t and Y(t) can be improved as well as having more balanced-

weights through an advanced particle filter, called auxiliary particle filter (APF).

The APF is an advanced particle filter technique for state-space models which was introduced

by Pitt and Shephard (1999). This particle filter was proposed to improve the performance of

the BPF when the measurement density is informative relative to the process density (Pitt et al.,

2010). To explain more clearly, before the resampling step, this particle filter employs knowledge

about the current observation to improve the compatibility between particles and that observation

through an auxiliary variable.

We first describe the ideal, but usually not implementable, version of the APF, called the fully
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adapted APF. It relies on being able to compute the following terms

p(X(t)|Y(t), X(t−1)) =
p(Y(t)|X(t))p(X(t)|X(t−1))

p(Y(t)|X(t−1))
;

where

p(Y(t)|X(t−1)) =

∫
p(Y(t)|X(t))p(X(t)|X(t−1))dX(t);

p(Y(t)|X(t))p(X(t)|X(t−1)) = p(Y(t)|X(t−1))p(X(t)|Y(t), X(t−1)). (4)

Assume that we have particles Xk
(t−1), with corresponding weights W k

(t−1), k = 1, . . . , N at time

t − 1. To proceed to time t, a set of auxiliary indices γk ∈ {1, . . . , N} for k = 1, . . . , N are firstly

drawn from a categorical distribution with probabilities proportional to λk(t) = W k
(t−1)p(Y(t)|Xk

(t−1))

for k = 1, . . . , N . These are often referred to as the first stage weights (Pitt and Shephard, 1999).

The idea is to pre-weight the particles so that particles supported by the next observation Y(t) are

given higher weight. Then, the states are simulated forward to time t using the exact conditional

of X(t) given Y(t) and X(t−1), i.e. Xk
(t) ∼ p(X(t)|Y(t), X

γk

(t−1)) for k = 1, . . . , N . It can be shown (see

below) that this results in particle weights that remain constant throughout the algorithm, and

thus the ESS remains at N after each iteration. The fully adapted APF is generally the optimal

filter in terms of a single time step ahead (Pitt et al., 2010).

However, in complex models it is often not feasible to obtain an analytical expression for

p(Y(t)|X(t−1)) and/or to simulate directly from p(X(t)|Y(t), X(t−1)). Therefore, the fully adapted

APF can often not be implemented in practice, producing the typical APF algorithm. We assume

that p(Y(t)|X(t−1)) can be approximated with some q(Y(t)|X(t−1)) (Johansen and Doucet, 2008).

This is often selected to be q(Y(t)|X(t−1)) = p(Y(t)|µ(t)), i.e. simply replacing X(t−1) with µ(t) in

the observation density where µ(t) is given by some location measure of the transition distribution

X(t)|X(t−1) (e.g. mean) when such a location measure is analytically available (Pitt and Shephard,

1999). Further, we can simulate from some proposal q(X(t)|Y(t), X(t−1)) when p(X(t)|Y(t), X(t−1))

cannot be directly simulated. One simple example is by simulating according to the transition

density, i.e. by setting q(X(t)|Y(t), X(t−1)) = p(X(t)|X(t−1)), but others are possible in the general

APF framework.

By using importance sampling arguments, it can be shown that the second stage weights of
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the APF are given by

wk(t) =
p(Y(t)|Xk

(t))p(X(t)|X
γk

(t−1))

q(Y(t)|X
γk

(t−1))q(X(t)|Y(t), X
γk

(t−1))
, t = 1, . . . , T, and k = 1, . . . , N. (5)

The method reduces to the fully adapted algorithm if the denominator in (5) equals equation (4)

in that wk(t) = 1 and W k
(t−1) = 1

N . The APF algorithm is presented in Algorithm 3.

Algorithm 3 Auxiliary particle filter (APF) algorithm

1: for k = 1, ...,N do
2: Draw sample X∗k

(1) ∼ p(X(1));

3: wk(1) = p(Y(1)|X∗k
(1));

4: Normalise weights W k
(1) =

wk(1)∑
j w

j
(1)

;

5: for t = 2, ...,T do
6: for k = 1, ...,N do
7: Determine a suitable statistic, µk(t), from p(X(t)|X∗k

(t−1)) and the first stage weights

λk(t) = p(Y(t)|µk(t))W k
(t−1);

8: Draw indices γk from the set of indices k = {1, . . . , N} with
normalised sampling probabilities λk(t);

9: Draw sample X∗k
(t) ∼ q(X(t)|Y(t), X

γk

(t−1));

10: Calculate weights wk(t) =
p(Y(t)|X∗k

(t))p(X(t)|Xγk

(t−1))

p(Y(t)|µγ
k

(t))q(X(t)|Y(t), X
γk

(t−1))
;

11: Normalise weights W k
(t) =

wk(t)∑
j w

j
(t)

for k = {1, 2, . . . , N};

12: Estimate the log-likelihood component for the tth observation,

l(t) = log

(∑
j w

j
(t)

N

)
+ log(

∑
j λ

j
(t));

13: Estimate the overall log-likelihood L =
∑

t l(t).

There is a common misconception that the asymptotic variance of estimators based on the

APF is always smaller than the variance of SIR-based estimators. However in contrary to this

popular belief, not only can it be larger than those corresponding SIR-based estimators, but also

it can perform worse than the BPF in the full adaptation case (Johansen and Doucet, 2008). The

next section is allocated to describe a particle filter that is implemented on models which have a

combination of linear and non-linear structures.
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2.2.3 Rao-Blackwellised particle filters

Rao-Blackwellised particle filters (RBPFs) were introduced by Doucet et al. (2000) to improve the

performance of particle filtering when part of the model is analytically tractable. Fundamentally,

RBPFs use a particle filter for a few variables and marginalise out the rest using a filter such as the

KF. This leads to more accurate estimates than the standard particle filter (Doucet et al., 2000).

Suppose the state variable X(t) can be divided into two groups X
(1)
(t) and X

(2)
(t) so that the transition

density can be rewritten as p(X(t)|X(t−1)) = p(X
(1)
(t) |X

(1)
(t−1), X

(2)
(t−1))p(X

(2)
(t) |X

(2)
(t−1)). According to

the chain rule, the filtering distribution decompose to the following:

p(X
(1)
(t) , X

(2)
(t) |Y1:t) = p(X

(1)
(t) |Y1:t, X

(2)
(t) )p(X

(2)
(t) |Y1:t);

where p(X
(1)
(t) |Y1:t, X

(2)
(t) ) is analytically tractable and occurs where the model, conditional on X

(2)
(t) ,

is linear-Gaussian, hence, p(X
(1)
(t) |Y1:t, X

(2)
(t) ) is Gaussian and able to be calculated using the KF

(Fearnhead and Künsch, 2018). The RBPF can be more efficient than the BPF as the particle filter

is only required for a lower dimensional state-space and the remaining calculations can be done

analytically with the KF. The RBPF algorithm is presented in Algorithm 4, where lKF
(t) denotes

the log-likelihood computed by the KF at time t. As mentioned earlier in Section 2, a soil carbon

dynamics model can be considered as a tangible example of a state-space model. If a soil carbon

dynamics model is formed from non-linear and linear-Gaussian sub-models, the RBPF algorithm

can be used to estimate unobserved masses of SOC.

Algorithm 4 Rao-Blackwellised particle filter (RBPF) algorithm

1: for t = 1, ...,T do
2: Use the KF algorithm (1) on X

(1)
(t) and compute the log-likelihood lKF

(t) ;

3: Apply a particle filter on X
(2)
(t) to estimate the log-likelihoods l̂(t);

4: Update the log-likelihood l∗(t) = l̂(t) + lKF
(t) ;

5: Estimate the overall log-likelihood L =
∑

t l
∗
(t).

This section represented a discussion of a hierarchical model (HM) which includes two levels

of models. The observation model is located at the top level of the hierarchy and is followed

by the second level where the process model is located (Cressie and Wikle, 2015). Uncertainties

around the hidden process are modelled by the process model via a probability distribution of the

phenomenon of interest. The process model can be formed through sub-models. In addition, this

section assumed that the static parameter θ was fixed, but this is usually not the case and these two
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levels typically depend on unknown parameters. Unknown parameters in a soil carbon dynamics

model, for example, can be various quantities (e.g. decay rate of carbon in different pools) depend

on a soil carbon model used by a user. The HM becomes a Bayesian Hierarchical Model (BHM) if

the hierarchy contains the third level (underneath the observation model and the process model)

which is specified by the joint probability distribution of all the unknown parameters (Allenby and

Rossi, 2006; Berliner, 1996; Cressie and Wikle, 2015). In fact, this approach partitions the joint

probability distribution over data, latent system states and model parameters into three conditional

distributions which form well-defined hierarchical levels of the expression of uncertainties (Allenby

and Rossi, 2006; Cressie and Wikle, 2015). A BHM can be represented mathematically as

p(Y,X,θ) = p(Y,X|θ)p(θ) = p(Y|X,θ)p(X|θ)p(θ) (6)

where p(Y|X,θ) is the observation model, p(X|θ) is the process model, and p(θ) is the parameter

model (Allenby and Rossi, 2006). In this context, inference on θ and X through their joint posterior

distribution which is proportional to equation (6) is of interest. When the posterior distribution is

not tractable, it can be estimated by some numerical methods such as Markov chain Monte Carlo

(MCMC) methods. To this end, in the following section, we introduce some sampling techniques

based upon MCMC.

3 Particle marginal Metropolis-Hastings

When implementing a Bayesian approach, the purpose is to utilise the full joint posterior distribu-

tion over the set of unknown parameters, which are treated as random variables. In general for a

model with parameter θ, latent state variable X and observed data Y, the posterior distribution

is defined as:

p(X,θ|Y) =
p(Y|X,θ)p(X|θ)p(θ)∫

X

∫
θ p(Y|X,θ)p(X|θ)p(θ)dθdX

.

However, the denominator or “normalising constant” of the above posterior density requires the

computation of typically intractable integrals. In these cases, we may proceed with sampling tech-

niques based upon MCMC methods that do not require evaluation of the normalising constant.

The Metropolis-Hastings (MH) algorithm (Andrieu et al., 2010) is an MCMC method for gener-
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ating a sequence of correlated random samples from a probability distribution from which direct

sampling is difficult. This sequence can be utilised to approximate the distribution or to estimate

an expectation with respect to the posterior distribution (Andrieu et al., 2010).

Consider for the moment that we can analytically integrate out the state variables X and only

inference on θ is of interest. In that case, the expression for the posterior is:

p(θ|Y) =
p(Y|θ)p(θ)∫

θ p(Y|θ)p(θ)dθ
.

Assume that θm−1 is the value of the Markov chain at iteration m − 1 of the MCMC. A new

parameter value θ∗ is proposed as the next value of the Markov chain according to a user-specified

proposal distribution, θ∗ ∼ Q(·|θm−1), conditional on the current value of the chain. The candidate

θ∗ is accepted probabilistically based on the acceptance probability min(r, 1), where r is the below

MH acceptance ratio:

r =
p(Y|θ∗)p(θ∗)Q(θm−1|θ∗)

p(Y|θm−1)p(θm−1)Q(θ∗|θm−1)
; (7)

The user is free to choose the proposal mechanism Q; if the Markov chain is run for enough

iterations, it will converge to the desired posterior distribution. However, Q can have a significant

impact on the finite-time efficiency of the MCMC (Robert, 2016). This proposal is often chosen

to be symmetric, i.e. Q(θ|θ∗) = Q(θ∗|θ), such as the normal distribution centred on the current

value of the chain. Alternatively, it may be chosen to be asymmetric which is skewed towards

larger values such as the log-normal distribution (Yildirim, 2012). The proposal distribution could

also be selected to obey constraints on the parameter space, such as handling variance parameters

that have all support placed on positive values.

The problem with this scheme is that in the case of non-linear and non-Gaussian state-space

models, the likelihood p(Y|θ) required in the acceptance ratio of the MH algorithm in equation

(7) is often difficult to compute (Andrieu et al., 2010). The PMMH algorithm can be used to solve

this problem.

3.1 Standard particle marginal Metropolis-Hastings

Particle filters give an unbiased estimate of the unknown likelihood for a given value of θ, which we

denote as p̂(Y|θ) (Ala-Luhtala et al., 2016). The PMMH algorithm uses this unbiased likelihood
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estimator in the MH ratio as a replacement to the exact likelihood. Even though only an unbiased

estimator of the likelihood is used, the corresponding MCMC algorithms still converges to the

true posterior distribution (Andrieu et al., 2010, 2009). The PMMH algorithm for estimating

parameters is shown in Algorithm 5.

Algorithm 5 Particle marginal Metropolis-Hastings (PMMH) algorithm

1: Initialise θ0;
2: for m = 1, ...,M do
3: Draw θ∗ from proposal distribution Q(θ∗|θm−1);
4: Estimate the likelihood at θ∗ using a particle filter;
5: Compute the acceptance ratio:

r =
p̂(Y|X,θ∗)p(θ∗)Q(θm−1|θ∗)

p̂(Y|X,θm−1)p(θm−1)Q(θ∗|θm−1)
;

6: Accept θ∗ as θm = θ∗ with probability min(r, 1) otherwise θm = θm−1.

As in standard MCMC, an appropriate proposal distribution for generating each candidate

parameter is required in the PMMH algorithm.

The number of particles used in the PFs should be chosen such that the variance of the log-

likelihood ratio estimator p̂(Y|X,θ∗)/p̂(Y|X,θm−1) is approximately equal to one. This achieves

a good compromise between MCMC mixing and computational complexity (Deligiannidis et al.,

2018; Pitt et al., 2012). In addition, this variance is inversely proportional to the number of particles

and increases linearly with the number of data T , therefore, the number of particles needed to keep

the variance around one is O(T 2) (Choppala et al., 2016; Deligiannidis et al., 2018). When the

number of particles increases, the speed of computation decreases. To attempt to overcome this,

we use an algorithm known as the correlated pseudo-marginal (CPM) method.

3.2 Correlated pseudo-marginal method

As mentioned earlier, the computational cost of the PMMH algorithm is O(T 2) and this can be

expensive for complex models and/or large datasets. The reason is that in the likelihood ratio of

the PMMH algorithm, estimators in the numerator and denominator of the likelihood ratio are

independent which increases the variance of the resulting ratio (Deligiannidis et al., 2018).

The CPM method is proposed by Deligiannidis et al. (2018) to correlate the estimators of the

likelihood ratio of the PMMH algorithm in order to reduce the variance of the resulting ratio. These

estimators are correlated through correlating the auxiliary random numbers used to obtain these
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estimators. Assume that the unbiased estimator of the intractable likelihood p(Y|θ) is p̂(Y|θ, U),

where U is the U-valued auxiliary random variables that are used to obtain the likelihood estimator.

Given a fixed set of random numbers U , all calculations in the particle filter are deterministic. This

includes generating samples from the transition density and the resampling step. Denote the state

of the joint Markov chain as (θm−1, Um−1). The idea of the CPM method is to propose a new

value (θ∗, U∗) such that the random numbers U∗ are close to Um−1, then we might expect the

likelihood estimates p̂(Y|θm−1, Um−1) and p̂(Y|θ∗, U∗) to be correlated. More specifically, the

proposal density of the CPM algorithm is Q(θ∗|θm−1)Z(U∗|U) where Z is the density derived

from the proposal U∗ = τU +
√

1− τ2ξ. Here, ξ ∼ N(0, I) and τ ∈ (−1, 1) (Deligiannidis et al.,

2018). The MH acceptance ratio of this method is:

r =
p̂(Y|θ∗, U∗)p(θ∗)Q(θm−1|θ∗)

p̂(Y|θm−1, Um−1)p(θm−1)Q(θ∗|θm−1)
.

The value of the Markov chain at iteration m is (θ∗, U∗) with probability min(r, 1), otherwise it is

(θm−1, Um−1). The CPM algorithm is presented in Algorithm 6.

Algorithm 6 Correlated pseudo-marginal (CPM) algorithm

1: Initialise θ0;
2: for m = 1, ...,M do
3: Sample θ∗ ∼ Q(.|θm−1);
4: Sample ξ ∼ N(0, I) and set U∗ = τUm−1 +

√
1− τ 2ξ;

5: Compute the estimator p̂(Y|θ∗, U∗) using Algorithm 7
6: Compute the acceptance ratio:

r =
p̂(Y|θ∗, U∗)p(θ∗)Q(θm−1|θ∗)

p̂(Y|θm−1, Um−1)p(θm−1)Q(θ∗|Θm−1)
;

7: Accept (θ∗, U∗) with probability min(r, 1) otherwise, output (θm−1, Um−1)

For the CPM method to be effective, it is crucial that the likelihood estimators in the numerator

and denominator of the MH ratio be highly correlated. Therefore, we require a particle filter

that processes the random numbers in such a manner that the likelihood estimates are similar

as possible when slightly perturbing the random numbers. The particle filter with a given set of

random numbers is shown in Algorithm 7. In the resampling step, systematic resampling is used

to resample the sorted particles using normalised importance weights Wt. The quality of a sample

generated with an MCMC algorithm can be checked by some MCMC diagnostic. In what follows,

two popular diagnostic checks are presented.
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3.3 MCMC diagnostics

For the sampling algorithms described to yield valid posterior distributions for statistical inference,

it is necessary to perform some simple diagnostic checks. We use two popular diagnostic checks:

(i) trace plots; and (ii) the Gelman and Rubin’s convergence diagnostic statistic, R̂ (Gelman and

Rubin, 1992) both of which can be used to assess whether the MCMC samples have reached a

stationary distribution and are “mixing” adequately. Trace plots are a simple, visual approach

for assessing convergence of the Markov process. Convergence can be diagnosed more formally

through the Gelman and Rubin’s convergence diagnostic. In this approach, samples from multiple

chains are compared to assess whether the output from each chain is indistinguishable, and this

can be considered to be the case when the scale reduction factor is less than 1.2.

Algorithm 7 Particle filter with fixed random numbers

1: Sample U(j∗) ∼ N(0, 1) and V(i∗) ∼ N(0, 1) for all j∗ ∈ {1, . . . , TN} and i∗ ∈ {1, . . . , T};
2: Sample Xk

(1) ∼ p(.|U1:N ,θ) for all k ∈ {1, . . . , N};
3: for t = 1, ...,T-1 do
4: Sort the collection {X1

(t), . . . , X
N
(t)};

5: Compute importance weights wk(t) and log-likelihoods l̂(t) = log

(∑
k w

k
(t)

N

)
for k ∈

{1, . . . , N};
6: Sample Xk

(t) based on systematic resampling using random values V1:T and normalised

weights W k
(t) for k ∈ {1, . . . , N};

7: Set Xk
(t+1) as a sample from p(.|Xk

(t), UNt+1:N(t+1),θ) for k ∈ {1, . . . , N};
8: Estimate the overall log-likelihood L =

∑
t l̂(t).

4 Case study

The Tarlee soil carbon model in Clifford et al. (2014) is used as a case study to illustrate the

proposed methods, but the methods can be applied to other soil carbon state space models too.

In the following, a background of the Tarlee site is provided in detail.

4.1 The Tarlee soil carbon model

Tarlee was an agricultural research experiment site located 80 km north of Adelaide, South Aus-

tralia and was established in 1977 as a long term field experiment examining the impact of manage-

ment practices on agricultural productivity (Skjemstad and Spouncer, 2003). The site is dominated
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by winter rainfall with an average of 355 mm from April to October and the soil is classified as

a hard-setting red-brown earth with sandy loam texture (Clifford et al., 2014). Long-term moni-

toring data from this site has been used for studying changes to soil carbon stocks under different

rotations of cereal, pasture and fallow (Clifford et al., 2014; Luo et al., 2010; Skjemstad et al.,

2004). The data and model motivating this study are those used in Clifford et al. (2014).

The Tarlee data used by Clifford et al. (2014) and in this study included those acquired from

three agricultural management treatments: the first was wheat cropping for grain each year from

1979 - 1987 and 1990 - 1996, wheat for hay in 1988 and 1989, and the year 1997 being fallow;

the second consisted of wheat cropping for grain and fallow rotations between 1979 - 1988 and

1990 - 1996, wheat for hay in 1989, and an additional year of fallow in 1997; the third consisted

of alternating years of wheat and pasture from 1979 to 1987, pasture and wheat for hay rotations

in 1988 and 1989, respectively, wheat for grain and pasture rotations from 1990 - 1996, with a

final year of fallow in 1997. For years in which a field was non-fallow, the total dry matter (TDM;

above-ground) was measured (t/ha) and in years where wheat was grown for grain, the total grain

yield (t/ha) was also measured. In addition, total organic carbon (TOC) was measured for each

treatment in the years 1979, 1985 and 1997.

Clifford et al. (2014) utilised a carbon model that included four latent variables which we will

denote as XC , XG, XW , and XP . These represent the masses of SOC, total grain dry matter,

total wheat dry matter, and total pasture dry matter, respectively, that evolve over time. To

differentiate these latent variables from their measured values, we will use the random variables

YC , YG, YW , and YP to denote the corresponding observations. In what follows, the process model

of the soil carbon model used by Clifford et al. (2014) is presented.

4.2 Process model

In our process model of soil carbon dynamics, X(t) which is presented in equation (1) includes

the masses of SOC in various pools, and the masses of carbon from different plant matter that

can enter the soil which are presented in equations (8)-(11). It is important to highlight that

equations (9) and (11) differ slightly from those presented in Clifford et al. (2014) which contained
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a typographical error. The process models for time t and field indexed by i are:

log(Xi
C(t)) = log(Xi

C(t−1)e
−K∆t + IiC(t)) + ηi(t), ηi(t) ∼ N(0, σ2

η); (8)

Xi
G(t) ∼ LN(µG + ρG(log(Xi

G(t−1))− µG), σ2
G); (9)

Xi
W (t) ∼ LN(log h+ log(xiG(t)), σ

2
W ); and (10)

Xi
P (t) ∼ LN(µP + ρP (log(Xi

P (t−1))− µP ), σ2
P ); (11)

where ρG and ρP are auto-regressive parameters for the evolution of grain TDM and pasture TDM

respectively; ∆t (= 1 year) is the time step and h is the harvest index (the ratio of wheat TDM

to grain TDM). The normal distribution is denoted by N(µ1, σ
2
1) with mean parameter µ1 and

variance parameter σ2
1, and LN(µ2, σ

2
2) denotes the log-normal distribution with mean parameter

µ2 and variance parameter σ2
2 for a log transformation of the random variable. The model treats

soil carbon as a single pool which has exponential decay rate K, assumed to be the same in each

field. In addition, Xi
W (t) is defined conditional on Xi

G(t) = xiG(t). Although the total wheat dry

matter contains the total grain dry matter i.e. Xi
G(t) ≤ X

i
W (t), these processes are separated since

grain yield is usually measured. The mass of carbon input to each field in each year, IiC(t), is

modelled as a function of the management practice, which is:

IiC(t) =



c(Xi
W (t) −X

i
G(t)) + crWX

i
W (t) Wheat for Grain

cpXi
W (t) + crWX

i
W (t) Wheat for Hay

cXi
P (t) + crPX

i
P (t) Pasture

cpXi
P (t) + crPX

i
P (t) Pasture for Hay

0 Fallow

where p is the proportion of the crop left above-ground after harvest, rP and rW denote the root-to-

shoot ratios (in terms of TDM) for pasture and wheat crops, respectively. The input function IiC(t)

includes carbon that enters into the soil from plant-matter that is already below-ground (i.e., roots)

and from plant-matter that remains above-ground after harvesting, c(Xi
W (t) −X

i
G(t)), in which, c

is the carbon content of dry plant matter and the above-ground plant-matter biomass is denoted

by (Xi
W (t) − X

i
G(t)). Given a vector of parameters for the model, denoted by θ that includes all

parameters presented in Table 1, the joint process model of the four independent processes (8)-(11)
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at time t and field i is a discrete-time Markov chain whose transition density can be written as:

p(Xi
(t)|X

i
(t−1),θ) = p(Xi

C(t)|I
i
C(t), X

i
C(t−1),θ)× p(Xi

G(t)|X
i
G(t−1),θ)

× p(Xi
W (t)|X

i
G(t),θ)× p(Xi

P (t)|X
i
P (t−1),θ);

where Xi
(t) = (Xi

C(t), X
i
G(t), X

i
W (t), X

i
P (t)) for i ∈ {1, 2, 3}. Assuming that the three fields are

independent, the overall transition density is therefore:

p(X(t)|X(t−1),θ) =
3∏
i=1

p(Xi
(t)|X

i
(t−1),θ);

where X(t) = (X1
(t), X

2
(t), X

3
(t)).

The next section is allocated to describe the observation model of the soil carbon model utilised

by Clifford et al. (2014).

4.3 Observation model

Observation models for the measured data are constructed by conditioning on the unobserved

variables XC , XG, XW , and XP . At time t in field i, Clifford et al. (2014) used the following

models to account for measurement error:

Y i
C(t)|X

i
C(t) = xiC(t) ∼ LN(log(xiC(t)), σ

2
εC); (12)

Y i
G(t)|X

i
G(t) = xiG(t) ∼ LN(log(xiG(t)), σ

2
εG); (13)

Y i
W (t)|X

i
W (t) = xiW (t) ∼ LN(log(xiW (t)), σ

2
εW ); and (14)

Y i
P (t)|X

i
P (t) = xiP (t) ∼ LN(log(xiP (t)), σ

2
εP ); (15)

where Y i
C(t), Y

i
G(t), Y

i
W (t), and Y i

P (t) are the measurement data of the SOC, grain dry matter,

wheat dry matter, and pasture dry matter, respectively. All data in field i at time t is denoted by

Y i
(t) = (Y i

C(t), Y
i
G(t), Y

i
W (t), Y

i
P (t)). The joint observation model of the independent measurements

(12)-(15) at time t and field i, conditioning on unobserved variable vector Xi
(t) and parameter θ is:

p(Y i
(t)|X

i
(t),θ) = p(Y i

C(t)|X
i
C(t),θ)× p(Y i

G(t)|X
i
G(t),θ)

× p(Y i
W (t)|X

i
W (t),θ)× p(Y i

P (t)|X
i
P (t),θ);
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and the overall observation model across all three fields is therefore:

p(Y(t)|X(t),θ) =

3∏
i=1

p(Y i
(t)|X

i
(t),θ);

where Y(t) = (Y 1
(t), Y

2
(t), Y

3
(t)).

4.4 Parameter model

To quantify the uncertainty in parameters and predictions, Clifford et al. (2014) adopted a Bayesian

approach for model fitting. To conduct a Bayesian analysis, we place a prior distribution on the un-

known model parameter θ. It represents our prior knowledge about the ranges of likely values that

parameters can take. The prior is often constructed as a set of independent univariate probability

density functions, whose joint density can then be easily constructed by simple multiplication. For

the Tarlee model and data, we used the same prior distributions as Clifford et al. (2014), which

are defined for 22 independent parameters of the observation model, process model as well as the

initial masses of SOC in the fields at the commencement of the study (1978). For ease of access,

we re-present the priors defined by Clifford et al. (2014) here in Table 1.

4.5 Estimating the posterior distribution for the SOC model

Changes in soil carbon stocks over time are important to both government agencies and farmers.

One of the aims of this paper is to quantify the uncertainty surrounding important soil attributes

such as the amount of SOC that was added through the management practices, and estimating the

parameters driving the sequestration of carbon. To estimate the posterior distribution p(XC ,θ|Y ),

we draw samples from p(X,θ|Y ) as it can be decomposed to p(X|θ,Y )×p(θ|Y ) and preserve the

components related to the SOC process XC and its parameters θ. Here Y represents all available

data and X represents all state variables at all times and all fields. Because the resulting likelihood

in the model is intractable, the CPM algorithm (6) is applied to the model to draw samples of

parameters from p(θ|Y ). For simplicity, for our motivating model, we use the same proposal

distributions as in Clifford et al. (2014), which are reproduced in Table 2.

Since the model is a combination of linear and non-linear state variables, the marginal likelihood

of non-linear state variableXC must be estimated using PFs. The marginal likelihoods of the linear-

Gaussian state variables can also be computed by PFs, but can be computed more efficiently by the
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Parameter Prior Type

X1
C(1978) Truncated-normal(40, 102, lower = 0) Uninformative

X2
C(1978) Truncated-normal(40, 102, lower = 0) Uninformative

X3
C(1978) Truncated-normal(40, 102, lower = 0) Uninformative

K LN(−2.71, (0.127)2) Informative

c N(0.45, (0.01)2) Informative

rW N(0.5, (0.067)2) Informative

rP N(1, (0.125)2) Informative

p Beta(89.9, 809.1) Informative

h LN(0.825, (0.36)2) Weakly Informative

µG N(0.42, (1.18)2) Weakly Informative

µW N(1.24, (1.12)2) Weakly Informative

µP N(1.41, (1.81)2) Weakly Informative

ρG Uniform(−1, 1) Uninformative

ρP Uniform(−1, 1) Uninformative

σ2
η Inv-gamma(0.001, 0.001) Uninformative

σ2
G Inv-gamma(0.001, 0.001) Uninformative

σ2
W Inv-gamma(0.001, 0.001) Uninformative

σ2
P Inv-gamma(0.001, 0.001) Uninformative

σ2
εC 0.025 Fixed

σ2
εG 0.023 Fixed

σ2
εW 0.133 Fixed

σ2
εP 0.067 Fixed

Table 1: Prior distributions of parameters in the model.

Parameter Proposal

K N(K, 0.0012)

c Truncated-normal(c, 0.0052, lower = 0, upper = 1)

rW Truncated-normal(rW , 0.052, lower = 0)

rP Truncated-normal(rP , 0.052, lower = 0)

p Truncated-normal(p, 0.0052, lower = 0, upper = 1)

h Truncated-normal(h, 0.052, lower = 0)

µG N(K, 0.052)

µP N(K, 0.052)

ρG Truncated-normal(ρG, 0.052, lower = −1, upper = 1)

ρP Truncated-normal(ρP , 0.1
2, lower = −1, upper = 1)

σ2
η Truncated-normal(σ2

η, 0.0012, lower = 0)

σ2
G Truncated-normal(σ2

G,
σ2
G

202
, lower = 0)

σ2
W Truncated-normal(σ2

W , 0.0012, lower = 0)

σ2
P Truncated-normal(σ2

P , 0.1
2, lower = 0)

Table 2: Proposal distributions used in the CPM method.

KF that will yield exact likelihoods for these state components. The KF is applicable in the Tarlee

model by using a log transformation, i.e. X̃ = log(X) and Ỹ = log(Y ), the state-space model

formed by the sub-model involving {X̃G, X̃W , X̃P , ỸG, ỸW , ỸP } forms a linear-Gaussian state-space

23



model. Since X̃W (t) depends on X̃G(t) and the structure of the state-space model is an auto-

regressive model, we rewrite it based on X̃G(t−1) so that:

X̃i
W (t) ∼ N(log h+ µG + ρG(X̃i

G(t−1) − µG), σ2
W + σ2

G).

The state-space model of X̃i
(t) = [X̃i

G(t), X̃
i
W (t), X̃

i
P (t)], i ∈ {1, 2, 3} and its corresponding observa-

tion is:

X̃i
(t) = AX̃i

(t−1) +B + ε∗(t), ε∗(t) ∼ N(0,Q∗);

Ỹ i
(t) = CX̃i

(t) + ν∗(t), ν∗(t) ∼ N(0,R∗);

where A, B and C are:

A =


ρG 0 0

ρG 0 0

0 0 ρP

 , B =


µG(1− ρG)

µG(1− ρG) + log(h)

µP (1− ρP )

 , and C = I3×3.

Also,

Q∗ =


σ2
G σ2

G 0

σ2
G σ2

W + σ2
G 0

0 0 σ2
P

 , R∗ =


σ2
εG 0 0

0 σ2
εW 0

0 0 σ2
εP

 .

Thus, the RBPF algorithm (4) is applicable to estimate the marginal likelihood of the non-linear

state component as well as compute the exact marginal likelihoods of linear state components.

The KF and PF filters are reused to draw a sample of the state process from p(X|θ,Y ). To

obtain this sample from the posterior distribution XC , we sample one of the trajectories based on

the final particle weights at time T and then trace this particles lineage backwards through time

in order to obtain a complete sample path (X∗
C(1), . . . , X

∗
C(T )). The algorithm of drawing a single

trajectory X∗
C recursively is shown in Algorithm 8.

where b∗t is the index of XC(t) at time t, Multinomial refers to a multinomial distribution that

gives an index k ∈ {1, . . . , N} proportional to the probability W k
(t), and akt is the index of the kth

sampled particle in the resample step of the particle filter algorithm at time t.

Quantifying the uncertainty of our estimate can be done in many ways, such as through the
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Algorithm 8 Sampling from the posterior distribution XC

1: Draw b∗T ∼Multinomial(W 1
(T ), . . . ,W

N
(T ));

2: Set X∗
C(T ) = X

b∗T
C(T );

3: for t = T, . . . , 2 do
4: Set b∗t−1 = a

b∗t
t ;

5: Set X∗
C(t−1) = X

b∗t−1

C(t−1);

estimated probability of functionals of interest or a 95% credible interval. We can infer the mass

of SOC added over a 20-year period from sampling from the posterior distribution using MCMC.

We work with 10 chains in the CPM method, each initialised with a randomly sampled parameter

vector and then run for 50,000 iterations with the first 5,000 discarded as burn-in. Therefore, the

total posterior sample size is 450,000. The posterior distribution p(X,θ|Y ), is represented by M

samples {(Xm,θm) : m = 1, ...,M} drawn from p(X,θ|Y ) so that these samples can be used to

estimate the posterior expectation of any function ϕ(X,θ).

E(ϕ(X,θ)|Y ) ≈ 1

M

M∑
m=1

ϕ(Xm,θm).

The only limitation of the accuracy of such estimates is the sample size, but for sufficiently

large M the error is negligible.

5 Results

We use two particle filters APF and BPF in the RBPF algorithm for the non-linear part of the

model. To avoid confusion, we define them as RB-APF and RB-BPF, respectively. In what

follows, we compare the performances of three algorithms BPF, RB-APF and RB-BPF in terms of

the precision of estimating the log-likelihood. The particle filter that has the smallest variance of

the estimated log-likelihood for a given number of particles will be used in the MCMC to obtain the

full posterior of parameters and latent states. Finally, we present the estimation of state variables,

model parameters as well as computing the convergence diagnostic of model parameters.

5.1 Comparison of particle filters

We use BPF, RB-APF and RB-BPF to estimate the log-likelihood of the state variables at a point

estimate of the parameter based on approximate univariate posterior modes (obtained from the
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Figure 2: The box plots showing the precision of the estimated log-likelihoods at the posterior mode

results of Clifford et al. (2014)) and compared their results to select the appropriate one for using

in the PMMH algorithm. In the case of the BPF, the linear and Gaussian structure of some of

the state variables are not taken advantage of, whereas for the RB-BPF and RB-APF we take

advantage of being able to compute some components of the log-likelihood analytically. To this

end, we did an experiment to estimate the log-likelihoods of the measurement variables with 1000

particles and repeat it independently 100 times to see the precision of estimation based on each

of the aforementioned particle filters. Table 3 shows the standard deviations of the estimated

log-likelihoods of the measurement variables and Figure 2 shows the box plots of them. As shown

in Table 3, the performance of the RB-BPF algorithm is far better than two other algorithms.

Method Standard deviation N
RB-APF 4.8 1000

BPF 0.54 1000
RB-BPF 0.07 1000

Table 3: The standard deviations of the estimated log-likelihoods based on RB-APF, BPF and RB-BPF
algorithms with 1000 particles at the posterior mode.
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5.2 Inference on the hidden process model

To perform inference on the mass of SOC, we chose the RB-BPF to estimate the state variables

and likelihoods required in the MH acceptance ratio on the basis that it has greater precision at

estimating log-likelihoods than the BPF and the RB-APF. As mentioned in section 3.1, the number

of particles should be chosen such that the variance of the estimated log-likelihoods is around one

to have a good compromise between MCMC mixing and computational complexity. In this case,

for getting the number of particles, the standard deviation of the estimated log-likelihood is chosen

to be 0.5 and we compared the speed of computation of the RB-BPF algorithm with the BPF

algorithm which is applied in Clifford et al. (2014). The results are presented in Table 4. The

RB-BPF requires about 50 times fewer particles compared to the BPF and is about 3 times faster.

Method Time (Secs) N
BPF 16.3 1060

RB-BPF 5.6 20

Table 4: The number of particles (N) for estimating log-likelihoods based on BPF and RB-BPF algorithms
at the posterior mode.

Consider the function ϕ(X,θ) which is described in section 4.5, as the change in SOC to field

i between 1978 and following year t:

ϕ(X,θ) = Xi
C(t) −X

i
C(1978);

and a common Bayes estimate of this function is:

ϕ̂(X,θ) = E(Xi
C(t) −X

i
C(1978)|Y ).

As it is shown in Figure 3, the amount of SOC is reduced in fields 1 and 2 while it is increased in

field 3 and the averages of the SOC change from 1978 in fields 1, 2, and 3 are −7.48, −7.11, and

2.06, respectively, with negative values denoting that fields 1 and 2 are expected to lose carbon

over a 20-year period.

The 95% credible intervals for ϕ can be achieved by computing the 2.5th and the 97.5th per-

centiles of the posterior distribution and define them as the lower and upper limits of the interval,

respectively. These 95% credible intervals for the amount of carbon added to the three fields in

Tarlee are (−20.68, 4.92), (−19.93, 5.07), and (−11.38, 14.56) for fields 1, 2, and 3, respectively.
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Figure 3: The expected difference of the SOC in each year from 1978, estimated based on the RB-BPF. The
changes in fields 1, 2, and 3 are indicated by solid line, dashed line, and dot-dash line, respectively.

We plot the 2.5th, 25th, 50th, 75th, and 97.5th percentiles for the SOC process and its forecast from

1998 to 2018 under the same management strategies of each field based on all 450,000 draws from

the posterior distribution in Figure 4. The posterior model is run forward from 1998 to 2018 to

forecast SOC stocks. As there are no available observations for that period, the uncertainty around

the SOC inputs is large and consequently, the uncertainty on SOC levels for each field is large. The

management strategies that are used in fields 1, 2, and 3 are “Wheat-Wheat”, “Wheat-Fallow”,

and “Wheat-Pasture”, respectively. It is noteworthy to mention that the proposed methods are

more efficient computationally than the methods used by Clifford et al. (2014) to estimate the

amount of carbon added between 1978 and 1997 which is shown in Figure 4.

Figure 5 highlights the histogram of samples drawn from the posterior distributions of model

parameters which presented in Table 1, and compares them with the prior distributions of the

model parameters to see what we have learned about them. Some priors are hardly visible when

they are plotted over the histograms because they are uninformative and much has been learned

about those parameters from the data. For example, the initial SOC conditions of each field,

the harvest index, the mean of the pasture yield, and different variance parameters in Figure 5

show good evidence of divergence between prior and posterior distributions. Furthermore, the

posterior distributions from the CPM method based on the RB-BPF approach agree with those
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Figure 4: Soil carbon dynamics and its forecast from 1998 onwards under the same management strategies
in the three Tarlee fields, estimated by the RB-BPF algorithm. The gray shaded part is the area between
the 2.5th percentiles and the 97.5th percentiles for the SOC process. The 25th percentiles and the 75th

percentiles for the SOC process are indicated by the dashed lines. The median carbon mass is indicated by
the solid line and the measured SOC values are indicated by filled dots.

from Clifford et al. (2014) which estimated from the PMMH method based on the BPF. The

advantage of using these new methods over the methods that are used in Clifford et al. (2014) is

the significant computational efficiency of them to replicate the results in Clifford et al. (2014).

If the RB-BPF is used in both CPM and PMMH methods with the same sample size for

estimating the likelihood ratio, the number of particles required by the CPM and PMMH methods

in each MCMC iteration are 20 and 55, respectively. The elapsed running times of the CPM and

PMMH methods for one chain with 50,000 samples based on the BPF algorithm are 156 and 210

minutes, respectively. This illustrate the better computational efficiency of the CPM method than

the PMMH method for a given choice of particle filter. Also the elapsed running time of the PMMH

method based on the BPF method which is used in Clifford et al. (2014) and the CPM method

based on the RB-BPF method for one chain with 50,000 samples are about 50 and 210 minutes,

respectively. The elapsed time for running the CPM method based on the RB-APF algorithm is

not reported here, as it took too long to converge to a stationary distribution.
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Figure 5: The marginal posterior distribution (histogram) based on the RB-BPF method for 17 model
parameters and their prior distribution (grey density).

We use the multivariate effective sample size divided by the number of particles as the overall

measure of performance to compare the statistical efficiency of the CPM method based on the

RB-BPF algorithm and what is used in Clifford et al. (2014). The multivariate effective sample

size divided by the number of particles for the CPM method based on the RB-BPF algorithm and

the PMMH method based on the BPF algorithm are 2.57 and 0.067, respectively. This illustrates

that the CPM method based on the RB-BPF algorithm outperforms the PMMH method based on

the BPF algorithm in terms of statistical efficiency.

The trace plots of 14 model parameters are presented in Figure 6 of the Appendix. The results

of the Gelman and Rubin’s convergence diagnostic statistics for 14 model parameters of the Tarlee

data set based on the RB-BPF method are shown in Table 5. Since the point estimate of R̂ is less

than 1.2, this indicates that the MCMC samples have converged a stationary distribution and are

mixing adequately.

The information gain observed between prior and posterior distributions in Figure 5 can be

used to formulate prior distributions for future studies in Tarlee or similar soil types and land

management.

30



6 Discussion and conclusions

In this paper, we have revisited the use of Bayesian statistical methods for model fitting and un-

certainty quantification for the soil carbon model presented in Clifford et al. (2014). A major

advantage of the Bayesian hierarchical modelling (BHM) framework used in that work and here is

that it allows us to think conditionally and critically about the process, the parameters, and the

data. This is a natural way to decompose the larger statistical problem into manageable compo-

nents that can be communicated more easily within multi-disciplinary science teams. A drawback

of using these Bayesian approaches when fitting models to data is that they can be computation-

ally burdensome. However, in this work, we have shown that advanced Bayesian methods can

drastically increase the computational efficiency of such modelling activities compared to those

employed in Clifford et al. (2014). In particular, we demonstrate that the Rao-Blackwellised boot-

strap particle filter (RB-BPF) offers substantial efficiency gains (in terms of computation time and

precision of estimating the log-likelihood) compared to the standard bootstrap particle filter (BPF)

and Rao-Blackwellised auxiliary particle filter (RB-APF). In terms of the precision of estimating

the likelihood for a fixed number of particles, the number of particles required and computation

time, the RB-BPF algorithm greatly outperforms the RB-APF, and the BPF algorithm which was

used in Clifford et al. (2014) (see Tables 3 and 4). This RB-BPF algorithm will therefore be useful

for building decision support systems that allow farmers and other land managers to rapidly ob-

tain predictions of soil carbon stocks into the future, based on past measurements using standard

computer hardware. In particular, efficient Bayesian statistical methods such as the RB-BPF are

likely to be beneficial to land-holders interested in selling carbon credits for carbon sequestered in

the soil. Since Bayesian methods allow for the estimation of probabilities associated with meeting

sequestration targets, they are therefore useful for assessing the financial risks and rewards that

might be associated with entering into such contracts.

Another important aspect of this paper is in introducing existing advanced Bayesian methods

to soil scientists and other environmental scientists working with similar classes of models. We

build on the ideas introduced in Clifford et al. (2014) to show the benefits of using advanced particle

filters rather than the standard bootstrap particle filter. We show how they can improve the speed

of computation and the precision of estimation which can be useful in the case of having a large data

set for representing knowledge about model parameters, model process dynamics and measurement

errors. It is important that these three sources of uncertainty are acknowledged jointly when making
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predictions about soil carbon stocks, otherwise a land-owner might unwittingly enter into a contract

to sequester carbon that has higher risk than anticipated. Figure 4 demonstrates that when few

observations of soil carbon are available, there can be considerable uncertainty around what the

soil carbon stock is and that frequent monitoring might be necessary to obtain predictions with

enough certainty to make the sale of carbon credits a low-risk venture. In addition, the Bayesian

modelling approach makes it possible for a regulator to set limits on the volume of carbon credits

they will allow a land holder to sell on the basis of how achievable that is deemed to be.

In this study, the one-pool model of Clifford et al. (2014) is used to illustrate the performance

and benefits of advanced Bayesian methods and the correlated pseudo-marginal (CPM) method

over the standard BPF and standard pseudo-marginal (i.e. particle marginal Metropolis-Hastings

(PMMH)), respectively. The importance of these methods will be more obvious in the case of:

(i) more complex models i.e. models with multiple carbon pools (higher state-space dimension);

and (ii) with longer datasets. Both the performance of the standard BPF and PMMH methods

decrease as these two model attributes are increased in size. Further research should consider how

these advanced Bayesian methods can also be used to identify the most parsimonious model for

predicting soil carbon dynamics. For example, the optimal number of carbon pools to include

could be considered as a model selection problem to provide a good fit to the data whilst avoiding

unnecessary model complexity model complexity.

7 Data availability

Data set can be accessed online at:

https://doi.org/10.4225/08/54F0786D6D923.
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A MCMC diagnostics of the results presented in sec-

tion 5

This section presents the trace plots and the Gelman and Rubin’s convergence diagnostics for 14

model parameters of the Tarlee data set based on the RB-BPF method in Figure 6 and Table 5,

respectively.
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Figure 6: The trace plots-based on the RB-BPF method of 14 model parameters that presented in Table 2.

Parameter R̂ Upper C.I. bound on R̂
K 1.01 1.02
c 1 1
rW 1 1
rP 1 1
p 1 1
h 1 1.01
µG 1.01 1.01
µP 1.11 1.17
ρG 1.01 1.01
ρP 1.01 1.03
σ2
η 1.04 1.06

σ2
G 1.01 1.02

σ2
W 1.05 1.09
σ2
P 1.08 1.09

Table 5: The Gelman and Rubin’s convergence diagnostic, R̂ calculated for the 14 model parameters
presented in Table 2. Since the point estimate of R̂ for each parameter is less than 1.2, the MCMC samples
can be considered to have reached a stationary distribution and are mixing adequately.
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